
PCASA: Proximity based Continuous and Secure
Authentication of Personal Devices

Pengfei Hu∗, Parth H. Pathak†, Yilin Shen‡, Hongxia Jin‡, Prasant Mohapatra∗
∗Computer Science Department, University of California, Davis, CA, USA

Email: {pfhu, pmohapatra}@ucdavis.edu
†Computer Science Department, George Mason University, Fairfax, VA, USA

Email: phpathak@gmu.edu
‡Samsung Research America, Mountain View, CA, USA

Email: {yilin.shen, hongxia.jin}@samsung.com

Abstract—User’s personal portable devices such as smartphone,
tablet and laptop require continuous authentication of the user
to prevent against illegitimate access to the device and personal
data. Current authentication techniques require users to enter
password or scan fingerprint, making frequent access to the
devices inconvenient. In this work, we propose to exploit user’s on-
body wearable devices to detect their proximity from her portable
devices, and use the proximity for continuous authentication of
the portable devices. We present PCASA which utilizes acoustic
communication for secure proximity estimation with sub-meter
level accuracy. PCASA uses Differential Pulse Position Modulation
scheme that modulates data through varying the silence period
between acoustic pulses to ensure energy efficiency even when
authentication operation is being performed once every second. It
yields an secure and accurate distance estimation even when user
is mobile by utilizing Doppler effect for mobility speed estimation.
We evaluate PCASA using smartphone and smartwatches, and
show that it supports up to 34 hours of continuous authentication
with a fully charged battery.

I. INTRODUCTION

There has been a tremendous growth in the number of
personal devices a typical user owns, carries and wears. Devices
such as smartphones, tablets and laptops are at constant risks
of being left unattended and personal data being stolen. User’s
proximity to these devices is a strong indication of whether
these devices are within user’s vicinity and physical control
or not. With increasing popularity of wearable devices like
smartwatches, fitness trackers and smartglasses, it is possible
to exploit their proximity with the portable devices (e.g.
smartphones, tablets) for user authentication. For example,
today’s smartphones (Android Smart Lock [1]) can detect
user’s smartwatch within its Bluetooth range [2], use this
information to infer user’s presence and remain unlocked for
user’s convenience. However, such techniques only provide a
coarse-grained control because they rely on RSS (Received
Signal Strength) which is known to be unreliable [3] for
authentication purposes. On the other hand, accurate estimation
of proximity of user’s wearable device(s) from her portable
device(s) can enable a secure and flexible authentication of the
portable device(s).

Accurate estimation of proximity between user’s personal
devices is the challenge. First and foremost challenge is that
it is difficult to measure the proximity at sub-meter level
accuracy. Previous approaches [4], [5] have suggested to use
ambient RF signal to detect if a given set of devices are in the

same RF context. Due to the high variations introduced by in-
terference and multi-path effects, these approaches are limited
to very low accuracy and longer estimation times. The second
challenge is that such authentication should rely on identity
verification of the personal devices, which in turn requires an
active communication between the devices. Numerous acoustic
based approaches [6]–[11] have been proposed to measure
proximity with higher accuracy using Time Of Arrival (TOA)
or Time Difference Of Arrival (TDOA) methods. However,
these techniques are not designed for authentication which
makes them vulnerable to many types of security attacks such
as the spoofing attack. The last challenge is that because prox-
imity based authentication needs to be performed continuously,
it is crucial to ensure that the proximity detection technique
consumes very low energy even with authentication rate of one
authentication per second and support user’s mobility during
proximity estimation. Previous approaches of acoustic commu-
nication cannot be directly applied because they either are not
suitable beyond very short range (< 1m) applications [12], [13]
or they cannot support user mobility [14]. More importantly,
none of the previous research on acoustic communication or
proximity measurement address the energy efficiency problem.

In this paper, we design and evaluate PCASA, a proximity-
based continuous and secure authentication scheme for user’s
personal devices. PCASA uses user’s wearable device (e.g.
smartwatch) as a vouching device for authenticating her
portable device (e.g. smartphone, tablet, laptop) by accurately
measuring the distance between the two. PCASA has three
important features:

(1) Secure - PCASA is designed to defend against the
attackers who aim to get illegitimate access to user’s portable
device when the user is away, by masquerading user’s wearable
device that is physically close enough to gain the access.

(2) Accurate - PCASA relies on acoustic communication
using the part of the ultrasonic spectrum that is inaudible to
human ears. It leverages the existing speaker and microphone
in the mobile devices to send and receive data and to estimate
the proximity with sub-meter accuracy in real-time even when
the user is mobile.

(3) Energy Efficient - To our knowledge, PCASA is the
first of its kind system that can perform continuous authenti-
cation using acoustic signals. Even with authentication being
performed every second, PCASA consumes very low energy



through the use of an energy efficient modulation scheme.
PCASA is suitable for wearable devices which have very
limited battery capacity.

Contributions of this work can be summarized as follows:
(1) PCASA is designed to defend against zero-effort attacks

and spoofing attacks with special consideration to user mobility
using carefully designed protocol and encrypted messages. It
ensures that an attacker cannot gain the illegitimate access to
a user’s portable device by impersonating her wearable device
within the safety range.

(2) For communication between devices, we adopt Differen-
tial Pulse Position Modulation (DPPM) - which utilizes idle
duration between the acoustic pulses to modulate the data.
DPPM’s properties of high energy efficiency and low demodu-
lation error are very well suited for continuous communication
between user’s personal devices.

(3) We implement PCASA and evaluate it using multiple
smartphones (Samsung Galaxy S4, S5, S6 and iPhone 6S) and
smartwatches (Apple Watch and Samsung Gear S2). With a
fully charged battery, it could support up to 34 hours continuous
authentication with average proximity estimation error being
less than 0.25 m when the user is mobile.

The rest of this paper is organized as follows. Section II
provides an overview of our system. We describe the proximity-
based authentication scheme in Section III, including both the
basic PCASA and with user mobility. Section IV presents the
energy efficient modulation scheme. The evaluation of PCASA
is provided in Section V. Section VI discusses the related work,
followed by the conclusion in Section VII.

II. SYSTEM OVERVIEW

In this section, we first discuss proximity-based authentica-
tion and its design challenges, and provide an overview of our
PCASA system. We then discuss the attack model that PCASA
aims to defend against.

A. Authentication using Proximity

PCASA is built on the fact that more and more users are
adopting wearable devices such as smartwatches, wrist-worn
fitness trackers, etc. that are already authenticated by the user
as they are always on users’ body. We refer to these wearable
devices as vouching devices. Users also carry other types of
devices such as smartphone, tablet, laptop etc. which are not
always within users’ vicinity and/or physical control. We refer
to these portable devices as authenticating devices. The central
motivation behind the design of PCASA is that if there is a
secure means of detecting the proximity of user’s wearable
device(s) from her portable device(s), it is possible to control
and authenticate user’s access to the portable device(s).

Since the vouching device and the authenticating device
are usually physically close when the legitimate user uses the
authenticating device, it can be automatically unlocked when
distance is small enough to meet users’ personal needs. Such
alternative primary authentication can help users by avoiding
the hassle of either typing in the password or using the fin-
gerprint sensor. When the user is away from the authenticating
device, the device can remain locked to secure user’s personal
information. With accurate proximity detection, it is possible

Fig. 1: System Overview

for users to customize their preferences about the distance
beyond which they would like their devices locked.

Apart from authentication, the user proximity can also be
used by the authenticating device to customize and configure
applications. For example, a smartphone can either (i) show
the notifications on the screen when user is very close (within
hand’s reach or screen readable), (ii) show the notifications
but hide the content when user is within a room distance or
(iii) turn off the notifications when user is far away or outside
the range. Proximity detection has many similar applications,
however, our primary focus in this work is on authentication.

B. Challenges
The use of proximity enables an intuitive way of device

authentication where user is not required to proactively per-
form any action (e.g. enter password, user fingerprint sensor).
However, there are many challenges in realizing it in practice.

(1) High accuracy: Proximity-based authentication requires
that the distance between the vouching and the authenticating
device is determined with sub-meter level accuracy. Although
acoustic communication can provide this level of accuracy, user
mobility and the resultant Doppler effect introduce significant
challenges in accurate distance estimation. This is especially
important given that the vouching devices are wearables which
constantly move with user’s body motion.

(2) Energy efficiency: In order to ensure secure authenti-
cation, it is necessary that the proximity detection is carried
out continuously. This requirement can incur very high energy
consumption overhead on the mobile devices. Hence, it is
necessary that the acoustic communication is energy efficient
and computationally inexpensive to be implemented on the
wearable devices.

In real-world application scenarios, it is possible that devices
of many users are continuously performing the proximity
detection operations in parallel. Hence, it is desirable that these
multiple pairs of devices can operate securely and efficiently
without any interference to each other.

C. PCASA System
Fig.1 provides an overview of PCASA, a continuous

proximity-based authentication system that is secure, accurate
and energy efficient. In PCASA, the vouching device contin-
uously sends a connection request message on an acoustic
channel. This message contains its identity and is signed by
its key shared with the authenticating device. In our system,
the authenticating device and the vouching device are assumed
to have conducted a one-time device pairing for exchanging



their hardware binding information (e.g., their MAC addresses
- MACA and MACV). If the authenticating device could suc-
cessfully receive the message and retrieve the identity of the
vouching device, it indicates that these two devices are within
communication range. The authenticating device will send back
its identity to the vouching device establishing the connection.
Once the vouching device verifies the identity of authenticating
device, the connection is established and they will then engage
in the continuous authentication phase.

After the connection is established, both devices will serve
as transmitter as well as receiver. The transmitter will send
out a message containing useful timing information to the peer
device at a fixed interval. The receiver will estimate its relative
speed with the transmitter based on the frequency shift of the
incoming acoustic signal according to the Doppler effect. Then
it demodulates the incoming signal to retrieve information. The
receiver will estimate the distance to the transmitter based on
the retrieved information and the speed estimate. If the receiver
is the authenticating device and the distance is less than a pre-
defined threshold, then it is authenticated. The authentication
distance threshold can be set by users as per their security
preferences.

D. Attack Model

We assume that a legitimate user can select a safety range
R. When the distance between the authenticating device and
the vouching device is no larger than R, the authenticating
device can be accessed by the legitimate user but cannot
be accessed by attackers. In this paper, we are interested in
defending against attackers whose goal is to get unauthorized
access to the authenticating device (i.e., when user is away,
a.k.a. the distance between two devices is larger than R).
PCASA is built on following assumptions. First, we assume
that the attacker is restricted to practical computational bounds
that cannot infer the shared key between the vouching device
and authenticating device before they safely update that key.
Second, we assume that the authentication between vouching
and authenticating devices takes place only when the vouching
device starts to move, i.e., the user starts to move. This
avoids unnecessary authentication and power consumption in
practice. Lastly, we assume that the authenticating device and
the vouching device are loosely synchronized. Given these
assumptions, we consider the following two types of attacks:

1) Zero-Effort Attacks: The attacker directly tries to access
the authenticating device while the authenticating device is out
of legitimate user’s vicinity or control but is authenticated.
This type of attack exists in RF based approaches and is
usually caused by inaccurate proximity estimation. One of
the best examples is the popular Bluetooth authentication.
The authenticated device will remain authenticated within the
communication range (≈ 10m) of Bluetooth. The sub-meter
accuracy of Bluetooth signal strength based approaches can
result in cases where it is possible that the authenticating device
is not in user’s sight, and an attacker could easily access the
authenticated device.

2) Spoofing Attacks: In the second type of attacks, the
attacker impersonates the vouching device to pretend to be
physically much closer to the authenticating device than the
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Fig. 2: Relay Attack in Proximity based Authentication

real vouching device. The current state-of-the-art proximity
detection approach [6] are vulnerable to this type of attacks.
Specifically, we consider two types of spoofing attacks:

(a) Replay Attacks: The attacker uses his/her own device
to record signals from the vouching device. Then it replays
the recorded signal from a short distance (< R) to spoof
the authenticating device and making it believe that vouching
device is present.

(b) Relay Attacks: The attacker uses his/her own devices
to create a faster channel to relay all messages between the
vouching and authenticating devices, aiming to fake a smaller
distance between the two devices. As shown in Fig. 2, the
attacker uses two malicious devices close to the vouching
device and the authenticating device. The fast channel can be
established through RF.

III. SECURE PROXIMITY PROTOCOL

We note that PCASA can not only accurately estimate the
distance between the authenticating device and the vouching
device, it does so in a secure manner such that it can be
useful in numerous proximity-based security related services
including authentication and secure notifications. In the rest
of section, we first present the secure proximity protocol of
PCASA. Next, we extend PCASA to a more practical case
where a user is mobile during the estimation of proxim-
ity. Lastly, we provide a comprehensive security analysis of
PCASA based on the attack model discussed in Section II-D.

A. PCASA Protocol Description

Figure 3 shows the overview of PCASA protocol. PCASA
requires both the authenticating and vouching devices to be
equipped with a speaker and a microphone. The continuous
authentication relies on the connection between the vouching
device and the authenticating device through the acoustic chan-
nel. The vouching device takes the responsibility to initialize
the connection by continuously sending a connection request
before establishing the connection. In order to support multiple
pairs of devices for authentication, we use Frequency Division
Multiplexing (FDM) to divide the total bandwidth into several
channels. Each pair of devices can exchange messages over an
available channel. More details about the channel division will
be discussed in Section III-B2.

Once the vouching device enters the communication range of
the authenticating device, the connection request could be re-
ceived by the authenticating device. As shown in Fig. 3(a), the
proximity detection will be conducted continuously after the
authenticating and vouching devices establish the connection.

The first successfully received connection request by the
authenticating device is denoted as m0 which contains the
encrypted identity (MAC address MACV) of the vouching
device. This message will be modulated onto the acoustic signal
through our novel modulation scheme (discussed in Section IV)
and transmitted through the speaker. As there exists a delay
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Fig. 3: PCASA Protocol: (a) shows how PCASA protocol works during the period that the vouching device is within the
communication range of authenticating device, including an initialization phase and continuous proximity detection; All message
are encrypted; (b) illustrates each message which contains the sender’s timestamp and the time difference.

between issuing a command to send the signal and actually
emitting the signal, we denote the time of issuing the command
as t∗V 0 and the emitting time as tV 0 for m0.

The authenticating device monitors all the channels and
once it receives the transmitted signal on a channel, it will
try to demodulate the signal through the demodulation scheme
described in Section IV-B. If the authenticating device can suc-
cessfully decrypt the demodulated message with its shared key
(with the vouching device) and retrieve the identity, it considers
this as a connection request coming from its paired vouching
device and marks the arrival time as tA0. The authenticating
device will then reply to the vouching device with a message
m1 which includes its encrypted MAC address MACA and
mark the emitting time of m1 as tA1. The vouching device will
denote the arrival time of m1 as tV 1 and perform the same
process as the authenticating device. If the vouching device
could successfully retrieve the identity of the authenticating
device, the connection is established.

After successfully establishing the connection, the content of
the messages will be different, which is shown in in Fig. 3(b).
We denote the message as mi where i = 2, 3, . . . . The
vouching device sends an acoustic signal to the authenticating
device by modulating the message m2. The content of m2

contains a timestamp t∗A2 which denotes when the message was
modulated and the time difference tA1 − tA0. The purpose of
adding t∗A2 is to ensure the order of messages that corresponds
to each authentication round and the freshness of the message
to prevent the replay attack, while the time difference is used
for distance estimation. At last, the authenticating device can
calculate its distance from the vouching device based on time-
of-flight using the following equation:

c

2
[(tV 1 − tV 0)− (tA1 − tA0)] (1)

where c is the speed of sound in air (340m/s [15]). Next,
the authenticating device sends message m3 to the vouching
device with content including its own timestamp and time
different tA2 − tA1. Once the vouching device receives the
message, it can also obtain the proximity estimate. Through
one proximity estimation per message, the entire process is
conducted continuously as long as the vouching device is
within the communication range.

For the time difference, tA(i+1) − tAi and tV (i+1) − tV i,
the system usually provides millisecond level timestamp,
the corresponding resolution of proximity estimation will be
1 ms × 340 m/s = 34 cm which is too large to provide

accurate proximity estimation. As the device keeps recording
at a sampling rate of 44.1 kHz when it sends a message,
the message will also be recorded by itself. Based on the
recorded signal, the transmitter could easily count the audio
samples between the emitting point of its own signal and the
arrival point of the received signal. Hence, we use count of
the samples instead of the time difference. It could provide
1 s

44100 × 340 m/s = 7.7 mm distance resolution which is
sufficient for our proximity application.

B. PCASA with User Mobility
We now consider a common scenario where a user is moving

while the proximity authentication is carried out.
1) Measure the Proximity when Moving: To address the

mobility of user, we need to estimate the relative speed of
device movement. As shown in Figure 4, without loss of
generality, we assume that the vouching device moves during
the transmission and its relative speed is v. Then, we have the
distance estimation d0AV = c(tA0 − tV 0), which is calculated
when the signal s0 arrives at the vouching device. We denote
d0∗AV as the distance between authenticating and vouching
devices when the signal s0 leaves the authenticating device.
Next, the vouching device sends signal s1. Similarly, we can
get the following distance dAV between them when the signal
s1 arrives the authenticating device as d1AV = c(tV 1−tA1), and
the distance d1∗AV when the signal s1 leaves vouching device.

Since the relative speed of devices is much lower than the
speed of acoustic signal, we consider d0AV ≈ d0∗AV and d1AV ≈
d1∗AV . As the vouching device incurs some delay in issuing the
signal s1 while it is moving, we could get

d1AV − d0AV = v(tV 1 − tV 0) (2)

With Doppler effect, we can estimate the relative speed of
movement v. Since no synchronization is required with tV 1 −
tV 0, then the right hand side can be obtained. By summing up
d0AV and d1AV , we get

d1AV + d0AV = c[(tV 1 − tV 0)− (tA1 − tA0)] (3)

Likewise, we can calculate the value of right hand side since
no synchronization is required. Therefore, with Equations (2)
and (3), we can easily get d0AV and d1AV . To this end, we can
calculate the current distance d2AV as follows

d2AV = d1AV − v(tV 2 − tV 1) (4)
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Fig. 4: Proximity estimation when the user is moving

2) Measure the Relative Speed using Doppler Effect: We
know from Equation (4) that to measure the proximity while
there is a relative movement between the authenticating device
and the vouching device, it is necessary to determine the
relative speed (v) of the movement. In this section, we show
how we can use the Doppler effect for estimating v.

Doppler effect states that if there is a relative movement
between the sender and the receiver, the frequency of the
received signal will shift by f = v

va
f0 where f0 is original

frequency, v is the relative speed between sender and receiver
and va is the speed of the acoustic signal. For example, the
sound speed is 340m/s at 25◦C, and if the original frequency
of the acoustic signal is 20kHz and the frequency shift is 1
Hz, the speed of the relative movement can be calculated as
1∗340
20k = 0.017 m/s = 1.7 cm/s.
In real-world user mobility scenarios, the estimation of v

is not straight forward even using Doppler effect. This is
because user’s motion is not uniform especially when the user
is walking. If the vouching device is user’s smartwatch, the
watch swings back and forth on user’s arm while walking.
Similarly, if the user’s smartphone is the vouching device, it
also swings back and forth while being in user’s pocket.

We investigate the two common scenarios of human walking:
1) with Samsung Galaxy S6 phone in the pocket; 2) with an
Apple watch on user’s wrist. The signal used for detection
of Doppler shift is generated at a frequency of 20.5 kHz
by another smartphone (Samsung Galaxy S5). Figs. 5(a) and
5(b) show the spectrogram for both scenarios and resultant
variations in frequency. It is clear that the effect of swinging
motion and non-uniform speed of walking is significant and
needs to be addressed.

To get a better estimate of average speed for a period of time,
we could split the period into shorter periods and estimate the
speed for each short period to make the speed estimate in real-
time. However, the short period will result in a smaller block
with fewer samples of acoustic signal, which in turn reduces the
frequency resolution. The frequency resolution is calculated as
Fs/N where N is the number of samples of the acoustic signal
within the block and Fs is the sampling rate. For example,
performing speed estimation at every 200 ms, the available
samples are 8820, the frequency resolution is 44100/8820 =

(a) Spectrogram - Walk with phone
in pocket

(b) Spectrogram - Walk with watch
on hand

Fig. 5: Frequency shift due to user’s walking activity

5 Hz and corresponding speed estimation resolution is 5 ∗
1.7 cm = 8.5 cm. This way, there exists a trade-off between
the speed estimation resolution and the rate of speed estimation.
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Fig. 6: Trade-off between speed estimation error and frequency
resolution with different number of samples (block size)

We empirically determine the size of the block of the avail-
able samples that can achieve a balance between the real-time
speed estimation and frequency resolution. In the experiments,
the user carries a Galaxy S6 in her pocket and Apple Watch
on her wrist at the same time to walk towards and away
from a Galaxy S5 for 4 times. We process the recorded data
with block sizes of 1764, 2205, 4410, 6615 and 8820 samples
which correspond the 40ms, 50ms, 100ms, 150ms and 200ms
interval speed respectively. For each kind of interval, we
average all the interval speed to get the estimate speed during
that period. For the ground truth of speed, we mark the fixed
distance (36 inches) on the ground for each step and measure
the step times using the accelerometer data from another
smartphone wrapped to user’s chest. We use the accelerometer
data to derive precise step duration and calculate the ground
truth speed for the fixed distance. Fig. 6 shows the error in
speed estimation with sample block sizes of 1764, 2205, 4410,
6615 and 8820. It is observed that block size of 4410 provides
relatively lower mean error in speed estimation and variation
compared to other block sizes. Thus, we use 4410 sample
points (100 ms) in this work.

As mentioned before, to support multiple pairs of devices, we
use frequency division multiplexing to split the total bandwidth
into several channels. As the movement of the vouching device
will cause a frequency shift, it is required to ensure sufficient
channel spacing. Based on our experiments, we find that
frequency shift is no larger than 400 Hz, which leads to each
channel’s bandwidth to be 800 Hz.

C. Security Analysis

1) Zero-Effort Attacks: It can be defended against as long as
the distance between the authenticating and vouching devices
can be accurately detected. As shown in the evaluation results



in Section V, the proximity estimate error is less than 25 cm
across all the devices used in our experiments. Therefore,
PCASA can defend against the zero-effort attacks.

2) Spoofing Attacks: We conduct the security analysis for
replay attack and relay attack respectively:

Replay attacks: In our protocol, the content of transmitted
messages vary constantly except m0 and m1 in the initialization
phase. Due to the loose synchronization between vouching
and authenticating devices, the attacker cannot record the
acoustic signals in one session of communication and spoof the
authenticating device at a later time. Therefore, the only thing
that an attacker can do is to record the acoustic signal from the
vouching device, then jam the vouching device, and replay the
signal immediately at a closer distance to the authenticating
than the vouching device. Note that the attacker has to finish
these actions in real time in order to conduct a successful replay
attack.

In a simpler case that a user does not move, the message will
be delayed by the attacker before it reaches the authenticating
device, resulting in a larger arrival time. According to Equation
(1), the estimated distance will increase. It indicates that the
authenticating device will always obtain a larger proximity
estimate, disallowing access to the attacker.

In the case when user (vouching device) is moving, we
consider d1AV according to Equations (2) and (3)

d1AV = (c− v)(tV 1 − tV 0)−
c

2
(tA1 − tA0) (5)

When the attacker conducts replay attacks, the arrival time tV 1

will be increased (assuming that tA1 − tA0 is a constant since
this is controlled by the authenticating device to decide the
interval before sending the next signal A1 after receiving A0).
Since, in practice, the speed of sound much larger than user’s
moving speed, i.e., c ≫ v, d1AV will increase accordingly. This
leads to the increase of d2AV according to the Equation (4).
Thus, PCASA can defend against the replay attacks.

Relay attacks: In this case, the malicious devices have to be
close enough to both vouching device and authenticating device
to make the relay attack work. This is because the malicious
device need to record the signal before sending it through the
fast channel. Now that the communication only happens when
the vouching device moves in PCASA, the attacker has to
closely follow the user who is equipped with vouching device.
However, this is impossible to remain undetected at all times
without attracting user’s attention. Therefore, the mechanism
of PCASA can naturally defend against relay attacks.

IV. ENERGY EFFICIENT DISTANCE ESTIMATION

Since the proximity-based authentication needs to be per-
formed continuously, it is required that the acoustic commu-
nication is energy efficient. In this section, we show how
Differential Pulse Position Modulation (DPPM, proposed in
[16]) can be used to meet following two requirements: (1)
decrease the energy consumption significantly compared to
the previous modulation schemes for ultrasonic signals; (2) it
should be possible to implement modulation and demodulation
on devices with limited computational capability (such as
wearables).
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Fig. 7: Energy Efficient Modulation: (a) shows the power
consumption of different components on smartphone. 0-amp:
speaker plays zero-amplitude sound, non-0-amp: speaker plays
non-zero-amplitude sound. (b) A DPPM symbol is the zero-
amplitude duration between two non-zero-amplitude pulses.

A. Modulation
The challenge with utilizing the acoustic communication is

that speaker consumes considerable energy in devices such as
a smartphone. We measure the power consumption of speaker
using a Monsoon power monitor on Samsung Galaxy S4
and S5 smartphones. The results of power consumption are
shown in Fig. 7(a). The devices are placed in the airplane
mode during the power measurements. We compare the power
consumption of Screen ON, Idle (with Screen OFF), Speaker
playing 0-amplitude sound (with Screen OFF) and Speaker
playing non-0-amplitude sound (with screen OFF). We observe
that speaker’s average power consumption when playing no-0-
amplitude sound is significantly higher and closer to that of
Screen ON. However, the power consumption of speaker when
playing 0-amplitude sound is much lower and close to that of
Idle.

There are two properties of current smartphone speakers
that motivate the use of DPPM - (1) Speaker can play very
short duration of sound (< 10 ms), (2) It consumes very
small amount of power when the speaker is producing a
sound with zero amplitude. DPPM modulates the data by
varying the 0-amplitude time between the non-zero amplitude
acoustic signals. As shown in Fig. 7(b), s1 and s2 are two
DPPM symbols which are 0-amplitude time periods of different
duration distinguished by a short non-zero amplitude acoustic
signal (referred as pulse or delimiter).

1) Inter-Symbol Pulse: While using acoustic signal for
continuous proximity estimation, it is required that the users
of the devices do not perceive/hear any sound. It is known
that human ear can hear sound in the range of [20 Hz, 20
KHz], however, the sound above 17 KHz is typically inaudible
[17]. Hence, we use the frequency band [17 KHz, 22 KHz] for
producing inter-symbol pulse. Since speakers are electrome-
chanical devices, abrupt change in amplitude and frequency
causes speakers to produce an audible “click” noise in practice
[18]. To address this, we use a double sideband amplitude-
modulation signal as the pulse whose outline serves as a signal
envelope. The envelope signal concentrates the power more at
the center frequency and reduces the audible artifacts at the
lower frequencies, eliminating the click noise.

2) DPPM Symbol: We assume a simple linear constellation
for DPPM symbols in this work. Let’s denote the length of the
first symbol s0 as T0, then the duration of the time symbols can
be represented as {Ti|Ti = T0+iδ, i = 0, 1, · · · , N−1}, where



δ is the minimum difference of two adjacent DPPM symbols
and N is a power of two. If we assume that each symbol will
appear with equal probability, the average duration of a time
symbol is T

(s)
0 + (N−1)δ

2 . Denoting the length of pulse as Td,
the total transmission time of the message with L bits will be
Tmsg =

(
Td + T0 +

(N−1)δ
2

)
L

log2N
+ Td.

3) Message Length: Based on the DPPM symbol duration,
we can now determine the length of the message as it was
shown in Fig. 3(b). The first part of the message is a timestamp
which is used to ensure the order of the messages and prevent
the replay attack. The length of timestamp is chosen to be
26 bits, which guarantees unique timestamps for 2 years at a
resolution of one second. This is sufficient to prevent the replay
attack. The second part of the message is the time difference
which is represented by the count of sample points. Its length
is chosen to be 18 bits to represent number of samples upto 5
seconds (44100×5). This way, the total length of the message is
44 bits. Since the second derivative of Tmsg is positive when
N ≥ 2, Tmsg is convex. Based on this, we find that order
of 16 could achieve the shortest message duration (505 ms)
among all the orders of DPPM. This means that according
to the protocol description in Section III-A, the device could
perform two consecutive authentications in just over 1 second
(505 + 505 = 1010 ms).

B. Demodulation

At the receiver side, the transmitted signal is demodulated
by first applying a frequency filter and then detecting pulses.

1) Pulse Detection: To overcome the effects of background
noise, we apply a bandpass filter to the incoming signal to only
let the frequency of the current channel pass. After applying
the bandpass filter, we detect the pulses by calculating the
correlation between the received signal and the reference pulse.
The correlation is calculated by sliding a window of size w (set
equal to the length of pulse) over the received signal with step
one.

2) Multipath Removal: The transmitted sound signal is
reflected from surrounding objects, arriving at the receiver
from multiple paths. This multipath effect introduces additional
challenge in demodulating the received signal. The reflected
signal can arrive immediately after the line-of-sight signal (also
the shortest path signal) or can be delayed for a long time
depending on the position of the reflecting object. The severely
attenuated signal could be easily removed as the correlation is
much small than the first incoming signal. We use a threshold
of 0.5 × max(r) to filter all small correlations. The receiver
uses the first peak of correlation as the start point of the pulse.

Figure 8(a) shows the result of pulse detection. To get the
ground truth of the start of pulse, we use the transmitter’s
original entire message signal to do cross correlation with the
recorded signal. As shown in Fig. 8(b), the detection error
on four devices (Samsung Galaxy S6, iPhone 6S, Samsung
Gear S2 and Apple watch) is no larger than 30 sample points.
Please note that start of the first pulse of each massage is
the message arrival time which will be used for measuring
proximity between the two devices.
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Fig. 8: Pulse Detection. (a) We use threshold to filter all the
small correlation which corresponds to the second and later
arrival signals as they are severely attenuated. (b) We compare
the detected start of pulse with the ground truth on four devices,
the error is less than 30 sample points.

V. EVALUATION

We evaluate the performance of our proximity based authen-
tication scheme PCASA from both energy consumption and
accuracy of distance estimation aspects.

Experiment Setup and Implementation In our experi-
ments, we use the following devices - Samsung Galaxy S4
(1), Samsung Galaxy S5 (2), Samsung Galaxy S6 (1), iPhone
6S (1), Apple Watch (1), Samsung Gear S2-LTE (1). All the
devices are equipped with a speaker and a microphone. In all
our experiments, the acoustic signal is generated at 20 kHz
and the speaker is set at the highest volume. The sampling
rate of the microphone for recording is set to 44.1 kHz. We
implement an application on the smartphones that performs the
DPPM modulation and demodulation as well as the proximity
calculation. The message used in the experiment is 44 bits long
which consist 26 bits timestamp and 16 bits time difference
(represented by the count of samples) as shown in Fig. 3(b).
We will discuss the roles of each type of devices with individual
experiments.

Energy Consumption Because only Samsung Galaxy S5
and S4 smartphones can be interfaced with Monsoon power
meter for accurate real-time power consumption measurement,
we use these smartphones for energy consumption experi-
ments. We measure the energy consumption of PCASA with
different authentication speeds, i.e., one authentication every
1.2, 1.4, 1.6, 1.8 and 2 seconds. For each authentication rate,
we measure the energy consumption for 15 minutes on the
devices. The result is shown in Fig. 9(a). We also find ratio of
authentication energy consumption to the total battery energy
capacity for both the devices. The energy consumption ratio
is presented in Fig. 9(b). As expected, lower authentication
interval results in higher ratio. Based on the ratio, we can find
that Galaxy S4 (which consumes more energy than Galaxy S5)
can perform continuous authentication for up to 1/0.007 ∗ 15
minutes = 34 hours at a rate of one authentication every 1.2s.

Speed Estimate To estimate the speed based on Doppler
effect, we consider two scenarios, 1) devices on the wrist, 2)
devices in the pocket. For the first scenario, we use Galaxy
S6 as transmitter while using Galaxy S5, iPhone 6S, Gear S2
and Apple watch as the receivers. For the second scenario, the
receivers are changed to Galaxy S4, Galaxy S5, Galaxy S6
and iPhone 6S. Galaxy Nexus is used as a reference device
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Fig. 9: PCASA energy consumption on smartphones

to record the accelerometer data for calculating ground-truth
speed as discussed in Section III-B2. The transmitter sends 44
bits messages every 1.2 seconds, meanwhile, the user carries
the receiver and moves towards and away from the transmitter
for 10 rounds. We then calculate the average speed during each
period. Fig 10 shows the error of speed estimate in comparison
with the ground-truth speed. It show that the wrist-worn devices
have relatively higher estimation error than the devices in the
pocket. The reason is because the swinging motion causes
higher speed fluctuations compared to walking activity. As we
cannot monitor the real-time fluctuation due to the limitation
of frequency resolution, the estimate error of swinging motion
could be higher than reported. However, we find that the speed
estimation error on all devices in our experiments does not
exceed 0.15 m/s.
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Fig. 10: Speed Estimate Error

DPPM Symbol Error To estimate the performance of mod-
ulation and demodulation of DPPM, we conduct experiments
to test the DPPM symbol error rate on iPhone 6S, Galaxy
S6, Apple Watch and Samsung Gear S2. We group iPhone
6S and Apple Watch as one pair and the other two devices as
the other pair. Each device serves as both the transmitter and
receiver. In the experiment, we fix the position of iPhone 6S and
Galaxy S6 at the same position, and move the Apple watch and
Gear S2 from 1 m to 9 m. Each transmitter sends the 44 bits
messages every 1.2 seconds for one minute. After the receiver
demodulates the signal, the error rate could be calculated based
on the original message from the transmitter. It is observed in
Fig. 11 that the error rate on all devices is less than 0.1. It
is interesting to observe that the error does not increase along
with the distance as multipath plays a more important role
in accurate demodulation. As shown in Fig. 11(a) and 11(c),
the iPhone 6S and Galaxy S6 have similar error rate pattern
(higher error rate in the center) while both Apple Watch and
Gear S2 have the opposite pattern. This is most likely due to
the multipath effect. As we fix the two smartphones at the same
position, they experience similar multipath effect which results
in similar error rate.
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Fig. 11: Symbol Error Rate
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Fig. 12: Proximity estimation error in mobile scenarios

Proximity Estimation For proximity detection, we conduct
experiment under the scenarios where the vouching device
moves while the authenticating device stays stationary. The
experiment is based on two pairs of devices (1) an iPhone
6S and an Apple watch and (2) Samsung Galaxy S6 and Gear
S2 watch. The phones serve as authenticating devices while
the watches act as the vouching devices. The authenticating
device is kept at one fixed position and the user carries
the vouching device and moves towards and away from the
authenticating device. Five different authentication intervals are
considered, i.e. 1.2, 1.4, 1.6, 1.8 and 2 seconds. For each kind
of interval, the vouching and authenticating devices alternately
send one message every authentication interval and stop after
sending 20 messages. Fig. 12 shows the proximity estimate
error for each device. For each interval, the figure shows
the average error with variation over 20 messages. On each
device, the proximity estimation error increases along with
the authentication interval. The results are in agreement with
Eqs. (2) and (4) which show the proximity estimate is related
with the speed estimate and the message interval/authentication
frequency. It can be observed that average error of proximity
estimation is no more than 0.25m even when the user is mobile.



VI. RELATED WORK

Proximity Detection: There are numerous works applying
acoustic signal to measure distance based on Time of Ar-
rival (TOA), Time Difference of Arrival (TDOA), and so on.
Many existing research have developed on acoustic localization
techniques [6]–[9], [19]. Techniques proposed in [7] requires
custom-built hardware which makes them much less practical.
Other approaches [8], [9] only achieves resolution in meters.
Peng et al. [6] proposed an acoustic signal based protocol
to estimate the distance between two devices by avoiding
time synchronization and it could achieve centimeter-level
accuracy. Although this work showed the accurate ranging with
centimeter errors, it is demonstrated under ideal circumstances
including no user mobility, unlimited battery power, and suf-
ficiently long computation time. Moreover, these techniques
are vulnerable to many attacks such as man-in-the-middle
attack, therefore not suitable for applications with high security
requirements.

Authentication Methods: As one of the most widely used
authentication method, password suffers from various security
and usability issues [20]–[22]. Since users have high cognitive
load to remember password for different devices [21], some
users intends to reuse one password [20] that makes it even
easier for attackers to guess [22]. As an alternative of password
based authentication, more and more research has focused
on biometric authentication recently [23], which unfortunately
also suffers from different security and usability problems.
[24] showed that it is possible to trick fingerprint readers
by forming a mold that can imitate a finger. Meng et al.
[25] found that an attacker can be trained to imitate a user’s
keystroke dynamics behaviors. Serwadda et al. [26] showed
that touch-based authentication approaches are also vulnerable
to forgery attacks where an attacker programs a robot to
replay collected touch strokes. Proximity based authentication
or access control has attracted more attention recently. Most of
the proximity based authentication apply ambient RF signal
as proof of physical proximity for co-located devices [4],
[5], [27]. As the RF signal fluctuates significantly spatially
and temporally, Rasmussen et al. [14] proposed a proximity-
based access control scheme for implantable medical devices
using acoustic signal. Recently, another work [12] attempted
to mimic the NFC with acoustic signals. Since it is designed
for very short-range (several centimeters) communication, this
work cannot be directly used in our focused applications (e.g.,
authentication, secure notification, etc.) that usually needs the
estimation of larger distances.

VII. CONCLUSIONS

In this paper, we presented PCASA, a proximity based
continuous and secure authentication scheme for personal de-
vices. We showed that the proximity of wearables on user’s
body from her personal device such as a smartphone can be
used for authenticating the personal device. PCASA utilizes
Differential Pulse Position Modulation for energy efficient
acoustic communication and performs an accurate distance
estimation even when the user is mobile. Evaluation shows
that PCASA can enable continuous authentication with 25 cm
proximity estimation error in presence of user mobility. As part

of the future work, we plan to further develop DPPM, which
can be used for energy efficient high data rate communication
between the wearables and the portable devices. We will also
extend the application of proximity estimation service beyond
the authentication purposes for customizing applications and
configuring device settings and preferences.
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