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ABSTRACT
Deep Learning (DL) has been widely adopted in almost all domains,

from threat recognition to medical diagnosis. Albeit its supreme

model accuracy, DL imposes a heavy burden on devices as it incurs

overwhelming system overhead to execute DL models, especially

on Internet-of-Things (IoT) and edge devices. Collaborative infer-

ence is a promising approach to supporting DL models, by which

the data owner (the victim) runs the first layers of the model on

her local device and then a cloud provider (the adversary) runs the

remaining layers of the model. Compared to offloading the entire

model to the cloud, the collaborative inference approach is more

data privacy-preserving as the owner’s model input is not exposed

to outsiders. However, we show in this paper that the adversary can

restore the victim’s model input by exploiting the output of the vic-

tim’s local model. Our attack is dubbed Ginver
1
: Generative model

inversion attacks against collaborative inference. Once trained, Gin-

ver can infer the victim’s unseen model inputs without remaking

the inversion attack model and thus has the generative capability.

We extensively evaluate Ginver under different settings (e.g., white-

box and black-box of the victim’s local model) and applications

(e.g., CIFAR10 and FaceScrub datasets). The experimental results

show that Ginver recovers high-quality images from the victims.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Networks →
Network privacy and anonymity.
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Figure 1: Illustration of collaborative inference. The full
model 𝑓𝜃 is divided into 𝑓𝜃𝐴 and 𝑓𝜃𝐵 which runs on the lo-
cal and the cloud, respectively.

1 INTRODUCTION
The last decade has witnessed the rapid development of Deep Neu-

ral Networks (DNN) in many fields, such as image classification

[22, 23, 33], object detection [25, 32], and natural language pro-

cessing [27, 34]. However, DNNs have become increasingly heavy

regarding computation overhead and memory footprint. As a result,

running DNN models on a local machine is challenging, especially

on resource-constraint devices, such as massive Internet-of-Things

(IoT) nodes.

To cope with the overwhelming running overheads of DNN

models, collaborative model inference pipelines have been proposed

[7, 8, 10, 18, 20, 28, 31], in which different devices execute different

parts of a DNN model. Figure 1 illustrates a typical collaborative

inference system. For example, Alice wants to run a DNN model

(denoted by 𝑓𝜃 ) on an input (denoted by 𝑥), i.e., 𝑓𝜃 (𝑥), but her
device cannot support it. By leveraging the collaborative inference

approach, Alice only needs to run the first layers of the model

(denoted by 𝑓𝜃𝐴 ) and sends the results of 𝑓𝜃𝐴 (𝑥) to a cloud provider
Mallory. Then, Mallory runs the remaining model (denoted by

𝑓𝜃𝐵 ) and returns the final inference result to Alice. Obviously, the

collaborative inference approach can facilitate the DNN deployment

by offloading most system overhead to the cloud.

The collaborative inference approach seems to preserve data

privacy as Alice’s model input 𝑥 does not leave her device. However,

several work have shown that Alice’s model input can be inferred

when Mallory is an adversary, i.e., model inversion attack against

collaborative inference [13, 14]. Given the intermediate features,

https://doi.org/10.1145/3543507.3583306
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i.e., the output of 𝑓𝜃𝐴 (·), existing approaches rely on traditional

optimizationmethods to perform the inversion attack, which results

in poor image quality especially for a large neural network [24].

Furthermore, with existing approaches, Mallory needs to repeat

the optimization process for each input 𝑥 . It takes minutes for the

existing approaches to recover an single image in our experiment.

Undoubtedly, existing approaches are time-consuming and laboring,

which greatly constrains their applicability in practice.

In this paper, we propose Ginver, a generative model inversion at-

tack against collaborative inference. Ginver learns an inverse model

G with respect to 𝑓𝜃𝐴 , which satisfies G
(
𝑓𝜃𝐴 (𝑥)

)
= 𝑥 . Then, Ginver

can directly apply the learnt model G to the outputs of 𝑓𝜃𝐴 (·) and
recover the model inputs. In addition to the white-box setting that

𝑓𝜃𝐴 is available to Mallory, we also consider the more challenging

black-box setting that the model structure and parameters of 𝑓𝜃𝐴
are unknown to Mallory. In the black-box setting, existing work

assumes that Mallory holds an auxiliary dataset in the same data

distribution as Alice’s [13, 14]. This assumption is impractical in

general because the reason why Mallory needs to steal Alice’s data

is that Alice’s data are sensitive and protected. In comparison, Gin-

ver does not require any auxiliary dataset to work. Instead, Ginver

leverages Natural Evolutionary Strategies (NES) to approximate

the reconstruction loss, which turns out to be highly effective to

recover the input. To the best of our knowledge, Ginver is the first

work that can perform the model inversion attack in the black-box

setting without an auxiliary dataset.

Compared to existing work, Ginver is more practical because

with Ginver, Mallory (1) does not require knowledge about the

data distribution of the victims, (2) efficiently launch the attack

within a second without the re-optimazation process, (3) is robust

against common defense strategies, and (4) more accurately steals

unseen input. We conduct extensive experiments to verify the ef-

fectiveness of Ginver and compare Ginver with existing work in

model inversion attacks. Specifically, we study the performance of

Ginver on CIFAR10 and FaceScrub datasets under the white-box

and black-box settings. The experimental results show that Ginver

achieves the state-of-the-art performance in the model inversion

attack against collaborative inference.

This paper is organized as follows. First, we present related work

in Section 2 and then provide preliminaries in Section 3. Afterwards,

we clarify Ginver in Section 4 which includes both the white-box

attack and the black-box attack. Experiment results and analysis

of Ginver performance are given in Section 5. Finally, we conclude

this paper in Section 6.

2 RELATEDWORK
This section provides related work about general model inversion

attacks and the emerging model inversion attacks against collabo-

rative inference.

2.1 General Model Inversion Attack
Both model inversion attack and membership inference attack aim

to steal data based on the model information, but they differ in

essence. Membership inference attacks against neural networks

have been extensively investigated [2, 4, 6, 15, 17, 29]. An adversary

can exploit them to confirm whether a piece of data belongs to the

training dataset. Different from membership inference attacks, a

model inversion attack [9, 19, 30, 36] targets the reconstruction of

the model input based on the model output. Many researchers have

proposed inspiring work in this topic. For example, Matt et al. [9]

gradually optimize the quality of the reconstructed data by narrow-

ing the gap in model output confidence between reconstructed data

and input data; Tan et al. [30] formulate the embedding distance in

Euclidean space to extract the embedding of the victim’s face by

querying face verification system scores. Based on the extracted

embedding, they design an embedding-GAN to recover face im-

ages; To reduce the noise in the reconstructed image and improve

the efficiency of the attack, Khosravy et al. [19] reduce the attack

search space into face feature vectors instead of general image

space; Yang et al. [36] propose a model inversion in an adversarial

setting via background knowledge alignment, which introduces a

neural network-based generator to reconstruct the input image;

and Chen et al. [5] design an inversion-specific GAN that can dis-

till useful knowledge from a public dataset to perform a model

inversion attack.

2.2 Model Inversion Attack Against
Collaborative Inference System

With the popularity of IoT devices, collaborative inference has

attracted more and more attention. However, the intermediate out-

put in the process of collaborative inference becomes a breeding

ground for privacy leakage. He et al. [13, 14] propose a model in-

version attack against collaborative inference under white-box and

black-box settings, where the malicious or curious cloud server can

reconstruct the user input from the received intermediate result.

However, they must repeat the optimization process to reconstruct

each user input. Hence it is not scalable for performing a large-scale

inversion attack on massive user inputs. More importantly, they

rely on an auxiliary dataset to reconstruct the user input in the

black-box setting. Mahendran et al. [24] propose reconstructing the

original image with the image representation output of the mid-

dle layer, which could be extended to the collaborative inference

framework. Our work belongs to this kind of attack but differs from

existing work in that our work does not use an auxiliary dataset

and is generative to unseen inputs.

3 PRELIMINARY
In this section, we introduce collaborative inference systems and

the threat modeling of the model inversion attack against inference

systems.

3.1 Collaborative Inference System
Recent years have witnessed the rapid proliferation of DL-enabled

IoT devices, e.g., wearable devices and personal voice assistants.

The inference of a DL model typically requires heavy computation

and storage overhead, which is prohibitively expensive for resource-

limited IoT devices. To address this problem, collaborative inference

systems are proposed, which have the following advantages.

• Flexibility. Deploying advanced DNN models on end de-

vices is challenging, whereas simple models usually do not

have enough model accuracy. Hence, DL applications on

IoT devices are hindered. The emergence of collaborative
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inference systems makes it possible to apply advanced DNN

models for inference on IoT devices by deploying the light-

weight part of a DNN model on IoT devices and offloading

the heavy part of the model to the cloud. Collaborative in-

ference systems are flexible because various model division

methods and offloading schemes can be used to accommo-

date different system scenarios.

• Privacy. In collaborative inference, IoT devices only need to

transmit the intermediate features from a middle layer of a

DNN model rather than the raw data to the cloud to perform

the inference. Since the cloud does not have direct access

to raw data, the data privacy vulnerability is significantly

relieved. In this paper, however, we demonstrate that the

model inversion attack can still cause large-scale privacy

leakage in collaborative inference under real-world settings.

3.2 Threat Modeling
We adopt the most common two-party collaborative inference sys-

tem to illustrate our attack. Our approach can be easily extended

to multi-party systems as well. The two parties are the data owner

and the cloud provider.

• The data owner (Alice, Bob)2 : The data owners (e.g., end
devices) are victims of privacy leakage. They apply DL in-

ference for better application intelligence. However, due to

their limited computation and storage capability, they need

the assistance of an external edge or cloud server to achieve

collaborative inference. During the collaborative inference,

they only execute the computation of the first part of the

neural network (i.e., 𝑓𝜃𝐴 ).

• The cloud provider (Mallory): The cloud provider is the

adversary, located at the edge or cloud (depending on the

inference task). He has sufficient computational resources

to deploy the second part of the model, i.e., 𝑓𝜃𝐵 . Once Mal-

lory receives the intermediate features from Alice, Mallory

proceeds with the rest inference and replies to Alice with

the inference results. On the other hand, however, Mallory

tries to restore Alice’s model input corresponding to the in-

termediate features from Alice. As the same with existing

work [13, 14], Mallory is assumed to be able to query Alice’s

local model 𝑓𝜃𝐴 . That is, Mallory can call 𝑓𝜃𝐴 on any input

and receives the result even if the structure and parameters

of 𝑓𝜃𝐴 are unknown.

Mallory aims to take advantage of these intermediate features

fromAlice to build a function mapping G with respect to 𝑓𝜃𝐴 , which

approximates G(𝑓𝜃𝐴 (𝑥)) to 𝑥 . Existing approaches [13, 14] have

the following limitations:

• laborious. For each input, Mallory needs to re-optimize a

new loss function, which is laborious and time-consuming.

Therefore, existing approaches cannot perform the model

inversion attack against collaborative inference in a large-

scale manner.

• Impractical. Existing model inversion attacks rely on aux-

iliary datasets, of which the data distribution is similar to

2
Note that Alice and Bob do not refer to a specific data owner, but generally refer to

each data owner in the training and exploiting phases, respectively.

Figure 2: The overview of our proposed attack. In the train-
ing phase, Ginver trains the inverse model G with interme-
diate features from Alice. After training, Ginver can use G
to quickly reconstruct the original data of Bob from unseen
intermediate features.

that of Alice’s. However, this is impractical in many privacy-

sensitive scenarios, e.g., medical imaging and facial recogni-

tion. In addition, it is highly likely that Alice does not reserve

the inputs due to the privacy concern.

4 OUR PROPOSED ATTACK
Figure 2 illustrates the attack procedure in Ginver, which includes

the training and exploiting phases of the inversion model. Specif-

ically, in the training phase, Mallory collects intermediate fea-

tures uploaded by Alice and trains model G with the objective

G(𝑓𝜃𝐴 (𝑥)) = 𝑥 ; in the exploiting phase, Mallory applies G to the

unseen intermediate features from Bob, which reconstructs Bob’s

input. In this section, we elaborate on the inversion model training

phase since the exploiting phase is straightforward.

4.1 Inversion Model Training Workflow
A middle layer of a neural network retains plentiful semantic char-

acteristics of the input image. Inspired by this, we design a trans-

posed convolutional neural network to recover the user input by

upsampling received intermediate features. The objective function

of optimizing the model G can be formulated as follows:

min

G
∥G(𝑓𝜃𝐴 (𝑥)) − 𝑥 ∥2 (1)

Equation 1 requires the original input 𝑥 to calculate the distance.

However, Mallory does not have direct access to the original input

𝑥 ; therefore, he cannot directly measure the difference between

𝑥 and 𝑥 (i.e., G(𝑓𝜃𝐴 (𝑥))). To address this problem, we replace the

objective function ∥G(𝑓𝜃𝐴 (𝑥)) − 𝑥 ∥2 with ∥ 𝑓𝜃𝐴 (𝑥) − 𝑓𝜃𝐴 (𝑥)∥2. For
simplicity, we use DIS(𝑥, 𝑥) to represent ∥ 𝑓𝜃𝐴 (𝑥) − 𝑓𝜃𝐴 (𝑥)∥2 in the

rest of this paper. Therefore, we need to minimize the objective
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function:

min

G
DIS(𝑥, 𝑥) (2)

In forward propagation, weak salient features are abandoned due

to nonlinear calculation, and thus it is difficult forDIS to accurately
capture the gap between 𝑥 and 𝑥 when 𝑓𝜃𝐴 is the output of the

model’s deep layer. Consequently, an inversion model G trained

on Equation 2 fails to produce high-quality vivid images. To im-

prove the quality of the inversion image, we use the Total Variation

[24] as the regularization term, which penalizes un-smooth images.

Equation 3 gives the definition of Total Variation:

𝑇𝑉 (𝑥) =
∑︁
𝑖, 𝑗

(
(𝑥𝑖, 𝑗+1 − 𝑥𝑖, 𝑗 )2 + (𝑥𝑖+1, 𝑗 − 𝑥𝑖, 𝑗 )2

) 𝛽

2

(3)

where 𝑥𝑖, 𝑗 represents the pixel value at position (𝑖, 𝑗), and 𝛽 can be

used to adjust the quality of the recovered image. When 𝛽 is large,

the image is blurred but most of the noise can be removed; when

𝛽 is small, the recovered image has more sharp boundary but also

more noise. Based on [24], We set 𝛽 = 2, which is effective in our

experiments.

In summary, Ginver applies the following loss function in train-

ing the inversion model G:
𝐿 = DIS(𝑥, 𝑥) + 𝜆 ×𝑇𝑉 (𝑥) (4)

where the hyperparameter 𝜆 is to balance these two loss terms. The

value of 𝜆 depends on the intermediate features obtained by the

attacker. When the intermediate features come from a layer in the

first few layers of Alice’s model, a small 𝜆 is appropriate; otherwise,

a large 𝜆 is preferred for a deep layer.

The inversion model G can be trained by taking the gradients of

the loss function, i.e.,

𝜕𝐿

𝜕𝜃𝑔
=

𝜕DIS(𝑥, 𝑥)
𝜕𝑥

× 𝜕𝑥

𝜕𝜃𝑔
+ 𝜆 × 𝜕𝑇𝑉 (𝑥)

𝜕𝜃𝑔
(5)

Since the second term
𝜕𝑇𝑉 (𝑥 )
𝜕𝜃𝑔

is known (Equation 3), the major

difference of our solutions between the white-box setting and the

black-box setting is how to calculate
𝜕DIS(𝑥,𝑥 )

𝜕𝑥
.

4.2 White-Box Setting
In the white-box setting, 𝑓𝜃𝐴 is available to Mallory and thus we

can directly compute the loss function 𝐿. Algorithm 1 in Appen-

dix A sketches the training procedure of the model G. We start

by randomly selecting some intermediate feature samples as the

training datasets, and use the method proposed in [11] to initialize

the parameters of model G, which will make our model more robust

during the training process. After that, in each iteration, we take the

selected intermediate feature sample as the input of G to obtain a

set of recovered images. Then, we relay the recovered images to 𝑓𝜃𝐴 ,

which again generates the corresponding intermediate features. We

update G by comparing the original intermediate features with the

newly generated intermediate features. At the end of the iteration,

we obtain the model G associated with 𝑓𝜃𝐴 .

4.3 Black-Box Setting
In the black-box setting, Alice’s local model 𝑓𝜃𝐴 is unknown to

Mallory. Therefore, it is impossible to optimize function 𝐿 directly.

To tackle this problem, we leverage the Natural Evolution Strategies

(NES) technique [35] to approximate
𝜕DIS(𝑥,𝑥 )

𝜕𝑥
.

NES is a heuristic algorithm for performing real-valued “black-

box” function optimization. It can optimize the objective function

even without any knowledge about the specific parameters and

structure of the objective function. Given this property, NES has

been widely used in optimization problems [1, 3, 16]. NES does not

directly maximize the objective function, but maximizes the ex-

pected value of the objective function under the search distribution

(usually Gaussian distribution) to estimate the gradient.

We present how NES can be used to estimate gradients and then

train the model G in Algorithm 2 in Appendix A. First, we select 𝑛

(must be even) random noises 𝛿1, 𝛿2, ..., 𝛿𝑛 as the search direction by

symmetric sampling, which obey Gaussian distribution and satisfy

𝛿𝑖 = 𝛿𝑛+1−𝑖 for 𝑖 ∈ {1, ..., 𝑛}. After that, we multiply this noise by an

appropriate search variance 𝜎 and add them to the generated image

𝑥 , leading to 𝑛 new images 𝑥1, 𝑥2, ..., 𝑥𝑛 where 𝑥𝑖 = 𝑥 + 𝜎𝛿𝑖 . Then,
we compute the loss values DIS(𝑥, 𝑥1),DIS(𝑥, 𝑥2), ...,DIS(𝑥, 𝑥𝑛)
by querying the local model 𝑓𝜃𝐴 . Finally, we use the following

expression to estimate
𝜕DIS(𝑥,𝑥 )

𝜕𝑥
.

𝜕DIS(𝑥, 𝑥)
𝜕𝑥

≈ 1

𝑛𝜎

𝑛∑︁
𝑖=1

𝛿𝑖DIS(𝑥, 𝑥𝑖 ) (6)

Once the estimated value of
𝜕DIS(𝑥,𝑥 )

𝜕𝑥
is obtained, we can sub-

stitute it into Equation 4 to calculate the gradients of the model

G.

5 EVALUATION
In this section, we evaluate our Ginver by extensive experiments.

First, we explain our experiment setup in Section 5.1. We then inves-

tigate the performance of Ginver in the white-box setting and the

black-box setting in Section 5.2 and Section 5.3, respectively. More-

over, we study the robustness of Ginver against common defense

strategies in Section 5.4. Finally, we summarize our experimental

results in Section 5.5.

5.1 Experimental Setup
5.1.1 Datasets and Model Structures. As illustruated in Table 1,

we conduct our experiments on the following two datasets: CI-

FAR10 [21] and FaceScrub [26].

• CIFAR10: The CIFAR10 dataset includes 60, 000 RGB images

which are divided into ten categories (e.g., airplane, bird

etc.). The resolution of the images is 32 × 32. By referring

to [13], we construct our target full model 𝑓𝜃 consisting of

six convolutional layers and two fully connected layers. Its

accuracy on the CIFAR10 dataset is 76.3%

• FaceScrub: The FaceScrub dataset consists of 106, 863 face
images of 530 celebrities; there are about 200 images for each

celebrity. These images are converted to 64×64 grayscale

ones. Based on this dataset, we train a CNN with seven

convolutional layers and two fully connected layers as the

target model 𝑓𝜃 . The classification accuracy of the full model

𝑓𝜃 is 85.7% according to our empirical experiments.

We divide each dataset into three subsets: 𝑇𝑟𝑎𝑖𝑛𝜃 , 𝑇𝑟𝑎𝑖𝑛G , and
𝑇𝑒𝑠𝑡 . 𝑇𝑟𝑎𝑖𝑛𝜃 is used to train the entire model 𝑓𝜃 . 𝑇𝑟𝑎𝑖𝑛G is used to
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Dataset # of Images Type Resolution Data Allocation Target Model Split Point Dimension of
intermediate features

CIFAR10 60,000 RGB 32×32
83% 𝑡𝑟𝑎𝑖𝑛𝜃
12% 𝑡𝑟𝑎𝑖𝑛G
5% 𝑇𝑒𝑠𝑡

6 conv + 2 fc

- 1st activation layer (ReLU1)

- 2nd activation layer (ReLU2)

- 4th activation layer (ReLU4)

- 6th activation layer (ReLU6)

- (x, 64, 32, 32)

- (x, 64, 32, 32)

- (x, 128, 16, 16)

- (x, 128, 8, 8)

FaceScrub 106,863 Gray 64×64
80% 𝑡𝑟𝑎𝑖𝑛𝜃
15% 𝑡𝑟𝑎𝑖𝑛G
5% 𝑇𝑒𝑠𝑡

7 conv + 2 fc

- 1st activation layer (ReLU1)

- 2nd activation layer (ReLU2)

- 4th activation layer (ReLU4)

- 7th activation layer (ReLU7)

- (x, 128, 64, 64)

- (x, 128, 32, 32)

- (x, 256, 16, 16)

- (x, 1024, 4, 4)

Table 1: Dataset and model information used in the experiments

train the inversion model G, and 𝑇𝑒𝑠𝑡 is used to test the validity

of the inversion model G. Note that for 𝑇𝑟𝑎𝑖𝑛G , we only obtain

the intermediate features from 𝑓𝜃𝐴 on the images to train G. We

randomly select 83%, 12% and 5% of all data samples for these three

parts in CIFAR10 and 80%, 10% and 10% in FaceScrub.

As shown in Table 1, we adopt four different split point placement

schemes to build Alice’s local model 𝑓𝜃𝐴 from the entire model 𝑓𝜃 .

Specifically, for each model, we place the split point at the 1st, the

2nd, the 4th and the last activation layer, respectively.

Baseline: In the white-box setting, we compare Ginver with the

state-of-the-art (SOTA) work [13]. The baseline method is based

on optimization for inversion attacks. As will be shown later, we

compare Ginver with the baseline method in the white-box attack.

Since no existing approach can work in black-box attacks without

an auxiliary dataset, we only measure Ginver’s performance when

it comes to black-box attack.

5.1.2 Metrics. We use the following two metrics to quantify the

attack effect, i.e., comparing the similarity/difference between the

input image and the recovered image.

• Structural Similarity Index (SSIM). It measures the con-

sistency between two images in three aspects: luminance,

contrast, and structure. The value range of SSIM is [0, 1]. A

larger SSIM value indicates a higher similarity between two

images.

• Mean Squared Error (MSE). It is used to measure the pixel-

wise difference between two images. A small MSE value

means that two images have higher similarity at the pixel

level.

5.1.3 Hyperparameter Setting.

• 𝜆: 𝜆 is the smoothing coefficient in the loss function (see

Equation (4)). We set the value of 𝜆 based on the results

shown in [24]. In particular, when the split point is located

in the shallow layer of a model, we set 𝜆 to a very small value

(e.g., a positive real number closed to zero), while if the split

point is located in deep layers, we increase 𝜆 proportionally

up to 3.

• 𝑛 and 𝜎 : These two parameters are the number of samples

and search variance in NES, respectively. According to [16],

we let to 𝑛 = 50 and 𝜎 = 0.001.

5.1.4 Hardware Equipment. We conduct our experiments on a

server running Ubuntu 20.04 LTS. The server is equipped with

Intel CPU i9-12900K, 64GB RAM, and Nvidia RTX 3090.

5.2 Attacks in the White-Box Setting

ReLU1

ReLU2

ReLU4

ReLU6

Baseline

Ref

(a) CIFAR10

ReLU1

ReLU2

ReLU4

ReLU7

Baseline

Ref

(b) FaceScrub

Figure 3: Inversion results in white-box attack. In the first
four rows, we illustrate the images recovered by Ginver with
four different split point placement schemes. The results
obtained by the baseline method where the split point is in
the last activation layer are presented in the fifth row. We
also give the original images in the last row.
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Figure 4: SSIM and MSE metrics of Ginver in recovering im-
ages in the white-box setting for different split points. A
higher SSIM and a lower MSE are better.

We first show the inversion results of both Ginver and the base-

line method in white-box attack in Figure 3. Specifically, we deploy

the split point at four different layers in Ginver and illustrate the

corresponding recovered images in the first four rows, respectively.

It is demonstrated that, when the split point is placed at deeper

layers, there is only a very slight decrease in terms of image quality.

Fortunately, even the split point is at the last activation layer, the

images recovered by Ginver is still recognizable. Therefore, the per-

formance of Ginver can be guaranteed, regardless of how the split

point is placed. In contrast, when we apply the baseline algorithm

to the target model split at the last layer, the obtained recovered

images are rather obscure.

We also evaluate Ginver by showing the statistical quantities of

the SSIM and MSE of the images outputted by Ginver in Figure 4.

We observe that for both datasets, Ginver can accurately recover

the images with high structural consistency (SSIM greater than 0.9)

and little noise (MSE less than 0.003) when the split point is located

in the first two activation layers. Even when the split point is placed

at a deeper layer (e.g., ReLU4 layer in our case), the performance of

Ginver is still guaranteed. For example, when the split point is at the

last layer, the medium values of SSIM for the CIFAR10 dataset and

the FaceScrub dataset are 0.703 and 0.651, respectively, while the

ones of MSE for the two datasets are 0.013 and 0.009, respectively.

In addition, we find that there are some abnormal points when

the split point is placed at ReLu4 layer. The reason may be that

some samples lost more salient features in the process of forward

propagation, making them more difficult to be recovered.

The comparison between Ginver and the baseline method in

terms of SSIM and MSE is reported in Figure 5. It is apparent that

Ginver consistently performs better than the baseline method. In

particular, Ginver outperforms baseline significantly when the in-

termediate features are from a deep layer (e.g., the last activation

layer). For instance, the baseline results in an average of MSE 0.04

CIFAR10 FaceScrub

Ginver Baseline Ginver Baseline

ReLU1 0.46 77.18 1.02 106.54

ReLU2 0.50 131.76 1.14 402.78

ReLU4 0.52 394.16 1.36 452.64

ReLU6(7) 0.68 445.56 1.37 992.02

Table 2: Time overhead (in seconds) to recover 100 images.

on FaceScrub dataset, while Ginver reduces the average MSE to

only 0.01.

In addition to the better quality of recovered images, Ginver is

more efficient for launching a large-scale attack. Table 2 tabulates

how long it takes to recover 100 images in Ginver and the baseline,

which shows that Ginver reduces the time overhead by more than

a hundred times. For instance, Ginver only takes 0.68 seconds to

recover 100 images from the last split point on the CIFAR10 dataset,

while the baseline requires 445.56 seconds to steal the data. The

reason why Ginver is efficient in recovering an image is that once

the model G is well trained by Ginver, the attacker can apply it to

the new unseen data directly. In contrast, the baseline must repeat

the whole optimization process for each new input.

5.3 Attacks in the Black-Box Setting
Since [13] is not compatible the black-box attack without the auxil-

iary dataset, we hereby show the performance of Ginver only. The

time cost for Ginver to recover the 100 images under the black-box

setting are very close to the one in the white-box setting, as Ginver

entails only a light-weight inference process under both of the dif-

ferent settings. Therefore, we hereby do not illustrate the details,

especially considering the space is limited.

In Figure 6, we illustrate the performance of Ginver by locating

the split point at different layers. We also give the original images

as ground truth for the purpose of comparison. As expected, we

have decreased quality of the recovered images if we split at deeper

layers. Specifically, when we split the neural network at the first few

layers (e.g., from ReLU1 to ReLU4 for both datasets), there is only

a minor decrease in terms of the quality of the recovered images.

When the split point is at the last layer (i.e., ReLU6 for CIFAR10 and

ReLU7 for FaceScrub), the recovered images are obscure. Typically,

however, the split point locates at the first few layers of a complex

model in collaborative inference to relieve the local computation

and storage cost for resource-constraint devices, hence Ginver is

still effective in real-world scenarios.

Figure 7 illustrates the SSIM and MSE of Ginver for recovering

images under the black-box setting. As expected, the performance

of Ginver degrades as the split point going deeper. Fortunately, the

performance still can be ensured until we split the model at the

last layer, which consistent with what we have shown in Figure 6.

In particular, even when the split point is located at ReLU4 layer,

the SSIMs are higher than 0.8 and the MSEs are lower than 0.01.

These results indicate that Ginver is of high efficacy to recover

images with high fidelity. Also, it is demonstrated again that the

performance of Ginver degrades drastically only when the split

point is at the last layer, while such a split scheme is rarely adopted

in practical collaborative inference systems.
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Figure 5: Overall comparison between Ginver and the baseline for the CIFAR10 and FaceScrub datasets in the white-box setting.
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Figure 6: Inversion results in black-box attack. The first four
rows show the recovered images at different split points,
while the last row shows the original images.

5.4 Potential Defense Strategies
We conduct more experiments to understand two commonly used

defense strategies against model inversion attacks.

5.4.1 Defense Strategy 1: A Deep Split Point. Previous results indi-
cate deep split point can defend Ginver to a certain extent in the

black-box setting. To investigate whether the white-box setting can

benefit from a deep layer, we train a ResNet-50 model [12] based
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Figure 7: SSIM and MSE metrics of Ginver in recovering im-
ages in the black-box setting for different split points.

Ref

Result

Figure 8: Inversion result from the last activation layer of
Resnet-50 in the white-box setting. The first row is the inver-
sion image, and the second row is the original image.

on the FaceScrub dataset. In this experiment, images are resized

to 224 × 224 to fit the model input. We set the split point at the

last activation layer, whose output dimension is (𝑥, 1024, 7, 7). As
shown in Figure 8, although the recovered images are blurry, they

are still recognizable. Hence, we can conclude that the split point

in a deep layer cannot defend Ginver effectively under a white-box

setting. To some extent, this experimental result also shows that

Ginver can be applied to more complex models.
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Figure 9: Inversion results with different number of channels.
“W” and “B” refers to white-box and black-box, respectively.

5.4.2 Defense Strategy 2: Reduced Dimension of Intermediate Fea-
tures. The reason why the collaborative inference system is vul-

nerable to Ginver is that the intermediate features contain a large

amount of information. Reducing the dimension of intermediate

features may mitigate the model inversion attacks to some extent.

We conduct experiments under both white-box and black-box set-

tings to verify this idea by reducing the number of channels in each

convolutional layer in the full model 𝑓𝜃 . We retrain three classifica-

tion modelsM1,M2, andM3 with FaceScrub dataset. The number

of channels in each convolutional layer of them is
1

2
,
1

4
, and

1

8
of the

original model, respectively. The classification accuracy of these

three models is 84.14%, 82.54%, and 78.4%. We adopt the same split

scheme as Table 1 and evaluate the performance of Ginver against

these new dimension reduced models under both white-box and

black-box settings.

As shown in Figure 9, under the white-box setting, when the

number of channels in the convolutional layer decreases to a certain

level (i.e.,M3), Ginver cannot recover a recognizable recovered

image if the split point is placed at the ReLU7 layer. This implies

that it is feasible to mitigate model inversion attacks by reducing

the dimension of intermediate features in this case. However, this

approach also results in considerable performance degradation of

DL model. Hence such a defense scheme is impractical for accuracy-

oriented tasks. Moreover, we also found that this method does not

provide sufficient defense when the split points are in the first few

layers, even in the black-box condition.

In addition, we also tested the impact of the bottleneck struc-

ture [12] on Ginver. This structure can reduce the dimension of

the intermediate value to reduce the transmission overhead while

maintaining the accuracy of the model, so it is widely used in col-

laborative inference system. We use this structure to reduce the

dimension of the median value of each split point to
1

2
(K1),

1

4
(K2),

and
1

8
(K3) of the original, and the results are shown in Figure 10.

Obviously, this structure cannot defend Ginver very well. Com-

pared with the previous defense, it cannot prevent Ginver from

recovering recognizable images from the intermediate values of

deep split points under white-box conditions, so thus the benefit of

bottleneck structure against Ginver is limited.

ReLU1
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ReLU4

ReLU7

Ref

W/B W/B W/B

Figure 10: Inversion results with bottleneck structure. “W”
and “B” refers to white-box and black-box, respectively.

5.5 Experiment Observations
Through the extensive evaluation, we can draw the following con-

clusions about Ginver. (1) Ginver is high effective in both the white-

box setting and the black-box setting, with relatively high SSIM and

low MSE. (2) Ginver is extremely fast to recover an image because

Ginver does not need to re-optimize itself for new input. It only

takes Ginver about one second to recover 100 images in a small

server. (3) The defense strategy of applying a deep split point is

less effective for the white-box setting than the black-box setting.

However, even for the black-box setting, this defense strategy is

impractical as in collaborative inference system it is rare to deploy

a heavy model on the local device. (4) The defense strategy of re-

ducing the intermediate features works poorly against our attack

as it significantly deteriorate the application model accuracy.

6 CONCLUSION
In this paper, we propose Ginver, a novel generative model inver-

sion attack against the collaborative inference system. Specifically,

we design an inversion model to reconstruct the user input based on

the intermediate features. Compared with existing schemes, Ginver

can perform a large-scale attack without a tedious re-optimization

process. Furthermore, we propose an NES-based inversion model

training algorithm without an auxiliary dataset for black-box sce-

narios. We conducted extensive experiments to evaluate the perfor-

mance of Ginver in both white-box and black-box scenarios. The

evaluation results demonstrate Ginver achieves better performance

compared with the baseline [13]. Besides, Ginver is robust against

typical defense strategies.
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A ALGORITHM
Algorithm 1 sketches the training procedure of the inversion model

G under the white-box setting, while Algorithm 2 shows how NES

can be used to estimate gradients and then train the inversionmodel

G under the black-box setting.

Algorithm 1 Ginver training in the white-box setting

1: function Train(𝑓𝜃𝐴 , F , 𝜆, 𝜖,𝑇 , 𝑘)
2: /*𝑓𝜃𝐴 is the victim’s model*/

3: /*F is a set of intermediate features*/

4: /*𝜆 is the equilibrium coefficient in Equation 4*/

5: /*𝜖 is the learning rate*/

6: /*𝑇 is the number of iterations*/

7: /*𝑘 is BatchSize*/

8: /*𝜃G represent the parameter of G*/
9:

10: initialize G, 𝑡 ← 0

11: while t < T do
12: Randomly sample 𝑓𝜃𝐴 (𝑥1), 𝑓𝜃𝐴 (𝑥2), . . . , 𝑓𝜃𝐴 (𝑥𝑘 ) from
F

13: 𝐿 = 1

𝑘

∑𝑘
𝑖=1 ∥ 𝑓𝜃𝐴

(
G
(
𝑓𝜃𝐴 (𝑥𝑖 )

) )
− 𝑓𝜃𝐴 (𝑥𝑖 ) ∥2

14: 𝐿 = 𝐿 + 1

𝑘

∑𝑘
𝑖=1𝑇𝑉

(
G
(
𝑓𝜃𝐴 (𝑥𝑖 )

) )
15: 𝜃G = 𝜃G − 𝜖 ∗ 𝜕𝐿

𝜕𝜃G
16: 𝑡 = 𝑡 + 1
17: end while
18: return G
19: end function

Algorithm 2 Ginver training in the black-box setting

1: function Train(F , 𝜆, 𝜖,𝑇 , 𝑘, 𝑛, 𝜎)
2: /*F is a set of intermediate features*/

3: /*𝜆 is the equilibrium coefficient in Equation 4*/

4: /*𝜖 is the learning rate*/

5: /*𝑇 is the number of iterations*/

6: /*𝑘 is BatchSize*/

7: /*𝑛 is the number of samples*/

8: /*𝜎 is search variance*/

9: /*𝜃G represent the parameter of G*/
10:

11: initialize G, 𝑡 ← 0

12: while t < T do
13: Randomly sample 𝑓𝜃𝐴 (𝑥1), 𝑓𝜃𝐴 (𝑥2), . . . , 𝑓𝜃𝐴 (𝑥𝑘 ) from
F and call it I

14: 𝑥 ← G (I)
15: 𝑔𝑟𝑎𝑑 = 0

16: for 𝑖 ∈ {1, 2, ..., ⌊𝑛
2
⌋} do

17: 𝛿𝑖 ∼ N(0, I)
18: 𝛿𝑛+1−𝑖 = −𝛿𝑖
19: 𝑥1 = 𝑥 + 𝜎𝛿𝑖
20: 𝑥2 = 𝑥 + 𝜎𝛿𝑛+1−𝑖
21: 𝑔𝑟𝑎𝑑 = 𝑔𝑟𝑎𝑑 + 𝛿𝑖DIS (𝑥, 𝑥1)
22: 𝑔𝑟𝑎𝑑 = 𝑔𝑟𝑎𝑑 + 𝛿𝑛+1−𝑖DIS (𝑥, 𝑥2)
23: end for
24: 𝑔𝑟𝑎𝑑 = 1

𝑛𝜎 ∗ 𝑔𝑟𝑎𝑑
25:

𝜕𝐿
𝜕𝜃G

= 𝑔𝑟𝑎𝑑 ∗ 𝜕𝑥
𝜕𝜃G
+ 𝜆 ∗ 𝜕𝑇𝑉 (𝑥 )

𝜕𝜃G

26: 𝜃G = 𝜃G − 𝜖 ∗ 𝜕𝐿
𝜕𝜃G

27: 𝑡 = 𝑡 + 1
28: end while
29: return G
30: end function
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