
Towards Automatic Detection of Nonfunctional
Sensitive Transmissions in Mobile Applications

Hao Fu , Pengfei Hu, Zizhan Zheng ,Member, IEEE, Aveek K. Das, Parth H. Pathak,

Tianbo Gu, Sencun Zhu, and Prasant Mohapatra , Fellow, IEEE

Abstract—While mobile apps often need to transmit sensitive information out to support various functionalities, they may also abuse

the privilege by leaking the data to unauthorized third parties. This makes us question: Is the given transmission required to fulfill the

app functionality? In this paper, we make the first attempt to automatically identify suspicious transmissions from app visual interfaces,

including app names, descriptions, and user interfaces. We design and implement a novel framework called FlowIntent to detect

nonfunctional transmissions at both software and network levels. During the exercising of the given apps, FlowIntent automatically

detects privacy-sharing transmissions and determines their purposes by utilizing the fact that mobile users rely on visible app interface

to perceive the functionality of the app at certain context. The characterizations of nonfunctional network traffic are then summarized to

provide network level protection. FlowIntent not only reduces the false alarms caused by traditional taint analysis, but also captures

the sensitive transmissions missed by widely-used taint analysis system TaintDroid. Evaluation using 2125 sharing flows collected

from more than a thousand running instances shows that our approach achieves about 94 percent accuracy in detecting nonfunctional

transmissions.

Index Terms—Security and privacy, information flow controls, mobile code security, network-level security and protection

Ç

1 INTRODUCTION

SMART phones are becoming indispensable to many of us,
thanks to the rich functionalities provided by a large num-

ber of mobile applications (or apps, for short). The sheer
number of these apps, however, makes it challenging to
understand their behavior and control their quality before
publishing. On one hand, these apps collect sensitive data,
such as locations, contacts and phone identifiers, to support
various functionalities. For example, a weather app queries
user’s locations to provide precise humidity information. On
the other hand, they may also abuse the resources and share
these data for purposes irrelevant to app functionality, e.g.,
analytics or advertisement. Therefore, it is crucial to auto-
matically infer the intention of sensitive transmissions initi-
ated by mobile apps and only signal an alarm when a
suspicious transmission is located.

Most existing solutions [4], [9], [14], [51], [52] treat all sensi-
tive transmissions as suspicious, which, however, inevitably

produce many false alarms as users often tolerate transmis-
sions of private data when they are used for promised serv-
ices [8], [45], [54]. As suggested in [45], a better approach is to
determine whether the transmissions are used to fulfill the underly-
ing app functionalities, and consider the extraneous transmis-
sions such as those used for advertising, analytics, cross-
application profiling and social computing, as threats. For
instance, a traffic flow that carries users location information
for driving navigation should be treated as benign and block-
ing it will cause app malfunction. But a location-sharing
request triggered by a flash light app is suspicious and
should be alarmed.

However, locating nonfunctional sensitive transmissions
is far from trivial. First, it is very difficult if not impossible
for machines to understand the functionalities of apps since
the code stream itself does not directly unveil its semantics.
Second, catching up the evolving speed of adversarial tech-
niques is hard. The level of code obfuscation have changed
dramatically since the first discovery of Android malware
in 2010 [44]. Malicious developers also continuously update
the addresses of their servers to avoid detection [57]. Last
but not least, although it is desired to involve as little
human intervention to recognize unintended transmissions
as possible, it is almost impossible to have an completely
automated method because of the complex nature of user
intention [54].

To date, various methods have been proposed to detect
and isolate the third-party libraries that may incur privacy
threats [6], [26], [34], [41], [46], [56]. However, they either
rely on the namespace and the program structure [6], [26],
[56], thus suffering from the evasion attacks such as obfus-
cation and call graph manipulation, or count on the deep
cooperation of developers [34], [41], [46], which ignores a

� H. Fu, T. Gu, and P. Mohapatra are with the Department of Computer
Science, University of California Davis, Davis, CA 95616 USA.
E-mail: {haofu, tbgu, pmohapatra}@ucdavis.edu.

� P. Hu is with the School of Computer Science and Technology, Shandong
University, Jinan 250100, China. E-mail: phu@sdu.edu.cn.

� Z. Zheng is with the Department of Computer Science, Tulane University,
New Orleans, LA 70118 USA. E-mail: zzheng3@tulane.edu.

� A.K. Das is with Forescout Technologies, San Jose, CA 95134 USA.
E-mail: akdas@ucdavis.edu.

� P.H. Pathak is with the Computer Science Department, George Mason
University, Fairfax, VA 22030 USA. E-mail: parth.pathak@gmail.com.

� S. Zhu is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802 USA.
E-mail: szhu@cse.psu.edu.

Manuscript received 5 July 2019; revised 7 Mar. 2020; accepted 22 Apr. 2020.
Date of publication 4 May 2020; date of current version 31 Aug. 2021.
(Corresponding author: Pengfei Hu)
Digital Object Identifier no. 10.1109/TMC.2020.2992253

3066 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

1536-1233 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8003-0212
https://orcid.org/0000-0002-8003-0212
https://orcid.org/0000-0002-8003-0212
https://orcid.org/0000-0002-8003-0212
https://orcid.org/0000-0002-8003-0212
https://orcid.org/0000-0003-4799-1051
https://orcid.org/0000-0003-4799-1051
https://orcid.org/0000-0003-4799-1051
https://orcid.org/0000-0003-4799-1051
https://orcid.org/0000-0003-4799-1051
https://orcid.org/0000-0002-2768-5308
https://orcid.org/0000-0002-2768-5308
https://orcid.org/0000-0002-2768-5308
https://orcid.org/0000-0002-2768-5308
https://orcid.org/0000-0002-2768-5308
mailto:haofu@ucdavis.edu
mailto:tbgu@ucdavis.edu
mailto:pmohapatra@ucdavis.edu
mailto:phu@sdu.edu.cn
mailto:zzheng3@tulane.edu
mailto:akdas@ucdavis.edu
mailto:parth.pathak@gmail.com
mailto:szhu@cse.psu.edu

great deal of intentional data leakage driven by under-the-
table income. More importantly, all of them are designed to
handle the misbehavior from isolated ad libraries, and they
do not apply to malicious transmissions embedded in the
core app logic.

As shown in several recent user studies [31], [49], [50], it
is crucial to account for the context pertinent to sensitive
resource accesses to enable effective resource access control.
In particular, it is observed that the security decision of a
user is strongly correlated with the foreground app and the
visibility of the requesting app (i.e., the app that is request-
ing the sensitive resource, which can be different from the
foreground app). This is because users often rely on dis-
played information to infer the intention of a request and
tend to deny requests that appear irrelevant to app’s func-
tionalities [49]. From another perspective, apps leverage UIs
to help bridge the gap between functionality and behavior.
As indicated in AppFence [21], resource accesses that do
not fulfill functionalities can be greatly purged without
causing influential UI side effects. Inspired by these obser-
vations, we propose a novel approach that mimics the deci-
sion making process of users to automatically identify
sensitive transmissions not indicated by app functionality.
Our approach actively infers the underlying functionality
provided by a sensitive transmission from visible app infor-
mation, including app name, description, and user interface
(UI), and alarm those transmissions that cannot be justified.
In particular, app name and description provide general
information about the core functionality of an app, while
user interface helps further identify more detailed and con-
text-dependent functionality of an app.

We implement FlowIntent, a proof-of-concept framework
composed of twomainmodules: AppInspector and Traf-

ficAnalyzer. AppInspector first automatically launches
and exercises a given app, with corresponding app context
and sensitive transmissions recorded. The nonfunctional
transmissions are then identified with the help of machine
learning, utilizing the visible app information including app
name, description and the UI for the running period.With the
set of transmissions labeled by AppInspector, TrafficA-
nalyzer then constructs classifiers to localize anomalies at
the network traffic level by using flow level features only.

Our design provides comprehensive detection at both the
app level and the network level. At the app level, AppIns-
pector can be used as an automatic app auditing service
for app markets and allows app market operators to identify
privacy leakages in an app before releasing it to the market.
As previous research [15], [45], [52] has pointed out, even
authentic apps available in popular Android app stores
may put users at risk by stealthily sending users’ private
information out in a user-unexpected way. Unlike existing
program analysis techniques [4], [9], [14] that report every
sharing transmission and thus generate massive false
alarms, the automatic intention inference engine provided
by AppInspector enables market operators to only focus
on suspicious transmissions not required by app functional-
ity. In addition, by leveraging human-readable features, our
approach is resilient to code obfuscation, a key limitation of
the existing namespace-based approaches [6], [26], [47].
Moreover, FlowIntent does not require any modification
of app code.

At the network level, TrafficAnalyzer can be deployed
on Network Intrusion Detection Systems (NIDS) or Access
Points (AP) to prevent unexpected leakages over HTTP(S)
flows on-the-fly. TrafficAnalyzer attempts to fill the miss-
ing part of existing network-based privacy-leakage detection
work [38], which do not determine what information needs
to be shared to fulfill the underlying app functionality. It can
also be used in app audit services to detect nonfunctional
flows before installation. We remark that FlowIntent goes
beyond the traditional traffic-based approach that depends
on a set of suspicious URLs [11], [27], [37], which often
requires significant human effort and is especially challeng-
ing for mobile platforms since a large number of apps are
normal apps that only leak private data occasionally. In addi-
tion, manually generated lists of suspicious URLs can barely
keep pace with the fast growth of app markets, where new
network addresses are continuously mushrooming. Further,
it is often difficult to tell even for humans whether a flow is
targeting an unexpected destination simply from the URL.
This is especially true when the illegal flows share the same
domain with legal flows. To this end, our approach relies on
machine learning to largely relax the dependence on human
intervention, which enables fast generation of signatures for
new traffic patterns. We emphasize that the objective of
TrafficAnalyzer is to identify nonfunctional leaking flows
instead of leaking apps. The app level information is only
used to help collect a comprehensive list of suspicious flows
for training, and the network signatures generated by Traf-

ficAnalyzer are solely based on the characteristics of HTTP
(S) flows. Therefore, NIDS does not need to knowwhich app
has generated a flow in order to identify privacy leakage in
the flow. Our work is orthogonal to existing works that focus
on learning app identity from network traffic [12].

In summary, our main contributions are as follows:

� We propose a novel definition of privacy leakage
based on visible app interfaces that bridges the gap
between app functionality and flow level behavior in
mobile platforms.

� We design and implement a cross-layer framework
for detecting privacy leakage in mobile platforms at
both program and network levels. Our approach is
easy to deploy and can potentially adapt to the con-
stantly evolving leakage patterns. We further show
how our novel design is capable to detect the mali-
cious transmissions hidden behind legitimate app
context.

� Our approach achieves about 96 percent accuracy on
1,666 privacy-sharing contexts and 94 percent accu-
racy on 2,125 leaking HTTP flows. Moreover, evalua-
tion shows that our approach is able to identify
leakages missed by dynamic taint analysis.

This manuscript is an extension of the conference ver-
sion [16] andpresents amore accurate anddetaileddescription
of the problemdefinition, systemdesign, implementation, and
evaluation. More concretely, we have added a discussion on
the most recent studies published after our conference paper
to better motivate our work. FlowInent previously focused
on the front window of the given apps. We have expanded it
by considering more windows using a smarter UI exerciser to
locate deeper leaks. While the conference paper only discusses

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3067

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

the results about location leakages, we have extended it by
considering more types of personal information leaks. We
have also collected more samples from other data sources and
redone the relevant experiments. We have further added an
important experiment to show that FlowIntent is capable to
detect stealthy nonfunctional transmissions hidden behind
legal context.With amore comprehensive analysis, we noticed
that one-class SVM used before is too sensitive to its parame-
ters and we replaced it by a more mature and practical algo-
rithm for our setting.

The rest of the paper is organized as follows. We present
the threat model in Section 2, followed by an overview of the
system in Section 3. We illuminate the design and implemen-
tation of app context modeling and traffic learning schemes
in Sections 4 and 5, respectively. After presenting the evalua-
tion results in Section 6, we list related work in Section 7. We
further discuss the future work in Section 8 and conclude our
paper in Section 9. The code is open-source and publicly avail-
able at: https://pmlab.cs.ucdavis.edu/flowintent.

2 THREAT MODEL

We target threats from the transmission flows generated by
third-party mobile apps, which carry sensitive personal or
device information that does not provide intended function-
alities to users. The flows are constructed either by intended
malicious logic embedded in apps, or malicious libraries that
piggyback on vulnerable apps. Functional information shar-
ingmay also be exploited for illegal purposes, which remains
an open problem and we do not consider that in this work.
We assume that the platforms where FlowIntent is
deployed, including the underlyingmobile operating system
of AppAnalyzer and the NIDS with TrafficAnalyzer

integrated, are trustworthy and uncompromised.

3 SYSTEM OVERVIEW

In this section, we first describe the threat model, and then
present a high-level overview of our approach for detecting
nonfunctional sensitive data transmissions.

Fig. 1 gives an overview of FlowIntent, which has two
key modules and works as follows:

AppInspector: From the set of apps we collected, we first
remove those not requesting any sensitive permission of our
interest. We then identify the running instances that transmit
out personal or device information with automatic UI
exercising and dynamic taint analysis. For each detected sen-
sitive transmission, we store its app level contextual data
(app name, description and UI) and the captured correspon-
dent traffic flows.We then construct machine learning classi-
fiers to identify sensitive transmissions that do not fulfill the
functionalities indicated by their app contexts. The collected
suspicious network flows are further fed to the next stage.

TrafficAnalyzer. Given the nonfunctional HTTP flows
labeled in the last phase and the pre-collected normal flows,
we derive both statistical and lexical features to classify
unseen traffic on-the-fly. The statistical features are light-
weighted and can be obtained without deeper inspection, but
they do not contain any semantic information. The rich
semantic data are encoded into lexical features, which require

Fig. 1. FlowIntent system architecture.

Fig. 2. Stealthy harmful transmission hidden behind normal location-
sharing context.

3068 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

https://pmlab.cs.ucdavis.edu/flowintent

more computational power to get and may be intractable
when the flows are encrypted.

In addition to supervised learning that requires both non-
functional and benign flows, TrafficAnalyzer is also able
to perform analysis solely on nonfunctional sensitive flows.
Based on the similarities among the target flows, TrafficA-
nalyzer clusters them into subgroups, and derive the net-
work signature, in the form of regular expression, from every
group.

We observe that some harmful network flows are hidden
behind functional ones with proper app contexts shown to
users. For example, Fig. 2 is a screenshot taken from an
authentic weather app in a prevailing Chinese app market.
Based on the user interface, even a cautious end user could
allow the app to send location information out of device
since it is helpful to offer precise weather reports. Unfortu-
nately, this weather app also collects user’s location data for
illegal purposes. As AppInspector mimics the user deci-
sion making process and solely examines the visible content,
it will not report anymisbehavior similar to this. Fortunately,
as we will show later in Section 6, the patterns derived from
TrafficAnalyzer can be utilized to locate nonfunctional
transmission missed by AppInspector. The beneficial con-
nection between AppInspector and TrafficAnalyzer

provides amore complete protection.

4 APPINSPECTOR

As described earlier, AppInspector leverages app context
of each sensitive transmission to mark nonfunctional instan-
ces. Below we first give definitions of sensitive transmis-
sions and app context used in this work.

Definition 1. Sensitive TransmissionA transmission t is sensi-
tive if it carries the data obtained from a protected resource r 2 R.

We note that what kind of resource needs to be protected
is application and user dependent. At the current stage, we
think the heuristic choices specified by TaintDroid and
FlowDroid [4] is reasonable and comprehensive.

Definition 2. App Context Given a sensitive transmission t
generated by an application a, its app context is a tuple

ct ¼ hn; d;Wi, where (1) n is the name of a shown to the user;
(2) d is the description of a available on the market and its value
could be empty in case of no associated description; (3)W is the
set of runtime user interfaces of a right after t is triggered.

Fig. 3 gives an example of app context extracted from a
weather forecast app, which transfers device GPS data to a
service provider.

We are now ready to define the semantic relationship
between t and ct with respect to the underlying app
functionalities.

Definition 3. Nonfunctional Sensitive Transmission A sen-
sitive transmission t is considered nonfunctional if it is not
required in any f 2 F , where F is the set of app functionalities
indicated by the app context ct.

Our definition of nonfunctional sensitive transmissions
offers a novel angle to understand privacy leakage. How-
ever, due to the complexity of app’s logic and the potentially
infinite number of implementations, it is next to impossible
to identify a finite set of formal rules to determine whether a
transmission is nonfunctional. Therefore, instead of manu-
ally specifying the mapping between transmissions and
functionalities and that between functionalities and context,
we directly bridge the semantic gap between a sensitive
transmission t and its associated context ct through machine
learning. By categorizing sensitive transmissions based on
app context, we formulate the detection of nonfunctional
transmissions as a classification problem. In the following
subsections, we first describe how we build the initial data
set to train our machine learning models. The details of the
learning process are then discussed in Section 4.4. We pres-
ent the evaluation results in Section 6.1.

4.1 Collecting Sensitive Running Instances

Collecting sensitive transmissions and their foreground
context is not a trivial task. Although app name n can be
easily extracted from its package meta-data and app
description d can be crawled from the corresponding app
store page, it is challenging to automatically trigger the sen-
sitive behaviors and correctly render their foreground user

Fig. 3. Example app context that includes the app name n (from apk meta-data), the description d (from app market) and the set of runtime user
interfacesW (recorded via auto exerciser). The corresponding preprocessed results for each field are shown in the last column.

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3069

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

interfaces. The existing testing tool provided by Android
can potentially help collect app context we need. However,
it is not implemented for security analysis so that its fuzzing
engine would waste time on many random events that are
irrelevant to our objective. In this paper, we integrate
TaintDroid [14] with COSMOS [17] to automatically collect
sensitive running instances of apps, where a sensitive run-
ning instance is a pair ðt;W Þ presenting the set of fore-
ground interfaces after initiating t. More specifically, we
install the target app inside a TaintDroid sandbox. The
sandbox has tcpdump

1 installed to collect the TCP packets
generated during examination. TaintDroid provides a
powerful real-time tracking system that alarms the end user
whenever a PII-sharing HTTP(S) flow is triggered. How-
ever, it can neither trigger sensitive calls automatically nor
collect contextual data. To this end, we use COSMOS [17] to
interact with the app to automatically trigger the internal
API calls of the app that access the concerned resources.
COSMOS contains a smart hybrid program analysis frame-
work that leverages over-approximated static analysis to
identify potential sensitive API invocations, and attempt to
activates the calls by properly awaking their front-end win-
dow. Specifically, it first identifies permission-protected
API calls through method signatures and constructs a call
graph for the given app. The set of call graph entry points of
the sensitive API calls and the set of widgets that invoke the
entry points are then identified by carefully traversing
through the call graph. For each Activity window recog-
nized by static analysis, COSMOS then attempts to trigger it
by properly sending inter-component messages during run-
time. We wait for a few seconds2 after each invocation and
if there are sensitive HTTP(S) flows reported by Taint-

Droid, COSMOSwill take a screenshot of the app and export
the foregroundwindow into a hierarchy XML file, which is a
standard format to represent the layout of user interface in
Android. We currently do not consider the more compli-
catedmulti-window scenario and leave that for future study.
For the captured images of foregroundwindows, FlowIntent
can leverage Optical Character Recognition (OCR) [20] to
extract the embedded text in order to capture all the context
information. In summary, a transmission reported by
TaintDroid (with the TCP packets stored by tcpdump)
and thewindow extracted by COSMOS together forms a sensi-
tive running instance. Combining it with the app name and
description, we now obtain the complete app context
ct ¼ hn; d;Wi for every identified sensitive transmission t.

4.2 Labeling App Context

We classify every app context used for training and testing
into two classes andmanually label them based on the nature
of the underlying transmission. We consider a context
ct ¼ hn; d;Wi legitimate if based on our understanding, at

least one of the indicated functionalities may require sending
the resource r carried by t out of device; otherwise it is treated
as illegitimate. In particular, we first note that developers often
name apps according to their functionalities. This is espe-
cially true for apps in the “tools” category in app stores,
which are usually named based on their core functionalities.
For instance, we expect that the app “LocalWeather” to be a
weather app and “SuperLed” to be a flashlight app. Nerve-
less, not all apps have meaningful names that imply their
functionality. The names such as “Yelp”, “Uber” and “Lyft”
by themselves do not indicate the services provided by the
apps. Fortunately, an app description, when it exists, gives us
a more fine-grained explanation of the app’s core functional-
ity. A sentence such as “the app uses your location so your
driver knowswhere to pick you up” [2] explicitly tells us that
this app transmits users’ locations to match nearby drivers.
However, both app names and appdescriptions only provide
high-level static information of apps. To capture the dynamic
fine-grained behavior of an app, we further collect user inter-
faces that are especially useful when (1) the app has multiple
functionalities that are valid under different contexts, and (2)
some functionalities provided are not clearly mentioned in
the app description. For instance, from the name and the
description of an alarm clock app, one may conclude that a
location-sharing flow generated from the app is suspicious
since alarm apps usually do not need location information to
fulfill their functionality. Although this is typically true, there
are exceptions. As an example, consider the two windows
shown in Fig. 4. From the screenshots we can infer that the
app on the right provides a functionality of “alarm clock”,
while the app on the left provides both “alarm clock” and
“weather” functionalities. Suppose both apps collect user’s
location under the displayed windows. The former context is
then treated as illegitimate since location information is irrel-
evant to “alarm clock”, while the latter context is considered
legitimate due to the fact that “weather” requires location
data to provide an accurate report.

Our dataset mainly involves the transmissions of device
location from a networking or GPS provider, and device iden-
tifier such as IMEI and ICCID. Similar to [47]where prevalent
functionalities identified from method names and variable
names in Java code are given, we summarize the core func-
tionalities observed from app context regarding the two

Fig. 4. The screenshots of two running alarm clock apps.

1. http://www.tcpdump.org/
2. We followed the rule of thumb threshold used in MadFroud, in

which they “create a new emulator image, install the app on the new
emulator, run the app in the foreground for 60 seconds, put the app
into the background, and run for another 60 seconds” to capture the ad
and analytical traffic [11]. Similarly, we triggered each Activity window
that may lead to sensitive flows and waited around 60 seconds. From
our observation, 60 seconds is generally sufficient to retrieve the useful
flow data.

3070 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

http://www.tcpdump.org/

main types of sensitive transmissions in Table 1. “Nearby
service” in the table is a generic name ofmany location-based
services (LBS), such as meal delivery, ride sharing, pest
inspection, etc. Compared to device location, phone id has
much less functionalities. In particular, “anti-theft” leverages
both phone id and location to provide real-time device track-
ing. Commodity apps may also leverage device identifiers in
fraud prevention efforts [2]. We currently treat all user
authentication pages as legal contexts for device id transmis-
sion. Due to the page limit, we refer to [47] for a more
detailed description of other functionalities.

4.3 Preprocessing

With the labeled sample pairs ðr; ctÞ, we then leverage
machine learning to automatically learn the semantic map-
ping between the resource type of the transmissions and the
app context, which can be used to identify unseen anoma-
lies in the future. Before feeding the samples to the learning
algorithms, we need to preprocess the raw data and convert
them into feature values. Fig. 3 gives an example of the pre-
processing outcome. We will discuss them in detail, starting
from app names.

We extract the app names from the apk meta-data. We do
not simply treat each name as a feature. Instead, we extract
popular words that frequently appear in app names with the
help of an existing word list.3 For example, “local” and
“weather” are extracted from the app name “LocalWeather”.
We also add some new words to the list such as “tech” and
“nav”, which are used by some apps as abbreviations.

We follow the approach in [19] to map app descriptions
into topics, which provides a concise representation of the
main functionalities of apps. We first utilize the Natural

Language Toolkit (NLTK)4 to tokenize English sentences
in a description into words. The words are then fed to a
NLTK’s stemmer, where they are reduced to their root forms.
We also remove all the stop words. We do the similar things
for apps with Chinese descriptions by using Jieba.5 We
then apply text mining to get the most related topics. Since
detailed topic modeling is beyond the scope of this paper,
we directly leverage the set of keywords for each corre-
sponding topic given in [19]. For a description that includes
keywords belonging to different topics, we choose the top
topic that is hit by the maximum number of different key-
words. It is possible that a description does not fall into any
topics generated by [19]. We assign such an app a coarse
topic given by the corresponding app market. Each topic is
treated as a single feature in our learning model. Table 2
shows some examples of topics given in CHABADA [19],

Google Play,6 and Baidu App Market.7 Table 3 shows the
keywords associatedwith some topics.

Unlike an app description that is typically constructed
with complete sentences, the content of a UI component is
often composed of phrases or short and incomplete senten-
ces. Therefore, it is possible to achieve accurate classification
without using sophisticated natural language processing
(NLP) techniques that are needed to preserve the order of
tokens. In this work, we utilize the simple yet powerful bag-
of-words technique that is commonly used in spam detec-
tion [10] by treating each distinct word appeared in the win-
dow of a running instance as a separate (binary) feature. In
addition to pure text data, we have introduced some extra
features that can help capture app functionalities. For exam-
ple, we create a binary feature “city-clickable” to represent a
special type of clickable widgets that have a city name and
are located at the top left of the windows. This feature is com-
monly found in instances that legally take user’s location to
deliver local news or services and users can change their
regions by clicking that button. Fig. 5 shows the set of most
popular tokens that appear in the UI of legal location-sharing
applications, where “city name” includes all the concrete city
names, and “pm” indicates either particulate matter or post
meridiem. We observe that these keywords closely match
our intuition about location related instances. In particular,
“city name”, “locate” and “nearby” are directly related to
locations, while “weather” and “pm” appear in weather
reporting instances, which are typically location sensitive.
Moreover, many location related services have a small wid-
get that shows the current time, which explains why “time”
is also a popular keyword.

TABLE 1
The Functionalities Supported by the Sensitive Transmissions

Resource Functionality

Location map, navigation, weather, news, nearby service, anti-theft
Dev id anti-theft, fraud prevention

TABLE 2
Sample Topics

CHABADA personalize, games and cheat sheets, music, navigation
and travel, language, share, health, kids, ringtones and
sound, search and browse

Google Play sports, social, shopping, productivity, tools,
photography, personalizing, medical, lifestyle, finance,
libraries and demo, music and audio

Baidu App
Market

social and communication, system and tools, finance
and shopping, themes, photography, video and audio,
lifestyle, office, books

Fig. 5. The top popular keywords (4808 keywords in total) of UIs
collected from 634 legal location-sharing instances.

3. https://github.com/first20hours/google-10000-
english

4. http://www.nltk.org/index.html
5. https://github.com/fxsjy/jieba

6. https://play.google.com/store/apps
7. http://shouji.baidu.com/

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3071

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

https://github.com/first20hours/google-10000-english
https://github.com/first20hours/google-10000-english
http://www.nltk.org/index.html
https://github.com/fxsjy/jieba
 https://play.google.com/store/apps
 http://shouji.baidu.com/

To properly separate the three types of features, we attach
the prefix “n_” and “d_” to the key words extracted in app
name and description, respectively. Therefore, a word like
“weather” that appears in multiple feature spaces will not
interfere each other, as shown in Fig. 3. In addition to app
context related features, we also add the resource type (e.g.,
“r_location” and “r_id”) as a feature to clearly specify the
nature of the instance.

4.4 Voting

The labeled app context will be used to further help classify
traffic flows, which will be elaborated in the next section.
Therefore, it is important to ensure both high precision and
recall at this stage. To this end,we consider threewell-studied
learning algorithms, random forest, SVM and logistic regression,
and adopt a commonly used consensus voting approach [7]
to filter potential misclassified instances. That is, only the set
of instances where all the three algorithms give the same clas-
sification results are retained. We provide the evaluation
results of our context classification in Section 6.1.

4.5 App Audit

Thus far, we have described the main structure of AppIns-
pector. After training, AppInspector can automatically
expose the sensitive transmissions and identify the nonfunc-
tional ones that are not supported by their app context. Hence,
AppInspector itself can be deployed as a standalone service
to help appmarket operators identify the suspicious transmis-
sions inside a newly uploaded app, before releasing it to pub-
lic. However, although contextual information indicates what
kind of transmission is appropriate, it alone is not capable to
precisely tell whether a specific flow is functional or not. As
wementioned in Section 3, nonfunctional flowsmay also exist
behind the app context that semantically match the resource
type of the flows. We can adopt the patterns generated from
TrafficAnalyzer to further recognize the stealthy transmis-
sions aswe discuss in the next section.

5 TRAFFICANALYZER

In this section, we describe the design of TrafficAnalyzer,
which processes the traffic flows collected by AppInspec-

tor and build classifiers to detect nonfunctional flows. We
consider two models: (i) Supervised learning model that
summarizes the patterns for nonfunctional sensitive flows
and normal flows; (ii) Clustering approach that generates the
signatures for nonfunctional sensitive flows only.

5.1 Traffic Flows

Based on our definition, an illegal app context indicates that
no underlying functionality requires the given sensitive
transmission. Therefore, we treat all sensitive transmissions
behind illegal contexts as nonfunctional.8 However, it is
doubtful to straightforwardly label all flows behind legal
contexts as functional. Although resource sharing is justi-
fied for these instances, it is crucial to detect the nonfunc-
tional/malicious flows hidden behind as shown in Fig. 2.
To get the ground truth of the flows behind legal contexts,

the following steps are applied: (1) We first examine the
destination hostname of the flow. If it belongs to popular
service providers such as “map.google.com”, “amap.com”
and “loc.baidu.com”, the flow is labeled as functional; (2)
Otherwise we check the plain text content in the response,
and the flow is considered functional if the response is
related to the resource sent; (3) For the rest of flows that can-
not be determined by above approaches, we have imple-
mented a blocking approach as follows. For each of these
flows, we first set firewall rules (based on the TaintDroid

reports) to block the flow. We then clean the cache on the
device, rerun the app, and observe the corresponding win-
dow. The flow is labeled as nonfunctional if nothing
unusual is observed, indicating that the app’s functionality
is not affected even if the flow is blocked.

5.2 Supervised Learning

As we do not know what features could be helpful before-
hand for our supervised learning, we follow the feature lists
that have been widely used in previous traffic classification
systems [24], [27], [28], [37], [38] and let the learning algo-
rithms choose from them based on their criteria.

Statistical Features. For each HTTP flow that forms a ses-
sion and is identifiable by a 4-tuple hsource IP, source port,
destination IP, destination porti, the following statistical
features are calculated:

� Total number of TCP packets
� Total number of uplink TCP packets
� Total number of HTTP packets (Packets with HTTP

application layer present)
� Packet size of all TCP packets
� Packet size of uplink TCP packets
� Packet size of downlink TCP packets
� Time interval between two consecutive TCP packets
The first three attributes hold single scalar values while

the rest four attributes are distributions, each represented
using 7 statistical features, namely, minimum, maximum,
median, mean, standard deviation, skewness and kurtosis.
While extracting the features from the traffic, no prior infor-
mation about the shape of the distributions (Gaussian or
not) are assumed. Since our primary concern is the accurate
representation of distributions obtained from the data, simi-
lar to the network features used in [24], we consider the first
four moments (mean, variance, skewness and kurtosis) in
addition to maxima, median and minima. The total number
of statistical features is 31.

Take the location-related flows as an example. Fig. 6(a)
shows that non-sensitive flows generally have a significantly
higher number of TCP packets as compared to location
flows, which is expected, while nonfunctional location flows
have a slightly lower packet count than functional flows.
Fig. 6(b) shows that non-location flows have larger downlink
packet sizes compared with location flows, which is mainly
contributed by data-intensive apps. Among location-sharing
flows, nonfunctional flows are typically ad flows that are
usually responded with an advertisement, which makes the
maximum packet size in the downlink traffic larger than
those for functional flows, where the response is mainly con-
trol packets denoting that the location has been received.
Fig. 6(c) shows that the functional flows have higher average

8. A malicious app may first send sensitive data to an inquiry ser-
vice provider (e.g., Google), and then forward the feedback to a bad
server. We will discuss this situation in Section 8.

3072 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

packet inter-arrival time, since the benign servers need more
time to handle users’ specific location-related requests and
generate appropriate responses.

Lexical Features. In addition to statistical features, we also
consider lexical features derived from the textual properties
of URLs, which often contains useful patterns to distinguish
benign and malicious traffic [27]. The intuition is that URLs
may contain words that can be used to differentiate the pur-
poses of location requests. As an example, consider an
illegitimate location sharing with the following URL: ads.
appsgeyser.com/?&tlat=38.5&tlon=-121.... We
can see that the domain name ads.appsgeyser.com has
a prefix of “ads”, which indicates the advertisement pur-
pose of the request. As another example, consider a loca-
t ion-sharing flow generated by a weather forecast
application with the URL v.juhe.cn/weather/geo?

&lon=-121.7&lat=38.5. The path portion of the URL
weather/geo?&lon=-121.7&lat=38.5 includes the
word “weather”, indicating that the server behind the URL
is a weather information provider. Moreover, both URLs
contain exact longitude and latitude values in the plain text,
which can used to identify location-sharing flows from all
outgoing traffic traces. We follow the “bag-of-words”
approach used in [27] and treat each token inside a URL as a
binary feature. Below is a list of lexical features considered.

� Binary feature for each token in the host name and in
the path URL

� Length of the hostname and that of the entire URL
� Number of dots in the URL
The length of the hostname and that of the entire URL as

well as the number of dots in the URL are proposed in [28]
and have been evaluated in [27]. They are common ways to
numerically characterize URLs.

Having both statistical and lexical features ready, we
then encode them into a common feature space and lever-
age widely applied supervised learning method such as
logistic regression to construct a classifier that is able to

differentiate between functional and nonfunctional sensi-
tive transmissions.

5.3 Clustering

In addition to traffic classification, an alternative approach
is to derive the malicious patterns only on collected non-
functional sensitive flows. By clustering the unexpected
flows into groups, we are able to generate the network-level
signatures that summarize the common patterns in these
flows. The signatures can then be easily fed to the existing
popular NIDS platforms such as Snort

9. We conduct an
initial study on the feasibility of flow clustering in detecting
privacy leakage, by deriving token-subsequence signa-
tures [30] from the nonfunctional traffic flows found by
AppInsepctor. Signature merging is then applied to fur-
ther improve the scalability. We also conduct an evaluation
in Section 6.2 to show that the derived signatures would
maintain a low false positive rate.

6 EXPERIMENTAL EVALUATION

In this section, we comprehensively evaluate the effective-
ness of FlowIntent, including the performance of both
AppInspector and TrafficAnalyzer.

6.1 AppInspector

We have crawled more than 20,000 authentic Android apps
from Google Play and Baidu App Market. Due to the differ-
ent recommendation policies used in separate app markets,
the apps were also crawled in distinct ways. While the top
500 apps in each category were collected from Google play,
the apps from the Baidu’s app market were gathered more
randomly. We also collect around 10,000 malicious samples
from Drebin dataset [3] and VirusShare.10 Since we focus on
PII leakages through the Internet, we only keep those apps
that require both sensitive resource access and network
related permissions.

For each app, we store its name and description (shown
in the introduction web page, if exists), into a text file. As
discussed in Section 4.1, we then run COSMOS to invoke the
sensitive API calls inside the apps and store the transmis-
sions identified by TaintDroidwith tcpdump. During the

Fig. 6. CDFs of statistical features.

TABLE 3
Example Topics With Relevant Keywords [19]

“navigation and travel” map, inform, track, gps, naving, travel, citi

“weather and stars” weather, forecast, locate, temperatur, city, light

“health” weight, bodi, exercise, diet, workout, medic

9. https://www.snort.org/
10. https://virusshare.com/

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3073

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

https://www.snort.org/
https://virusshare.com/

running period, the UIs associated with the sensitive trans-
missions are also recorded into the screenshots and the hier-
archy XML files. We then follow the procedure mentioned
in Section 4.2 that leverages the app name, description, and
screenshot to label each transmission. We have manually
labeled 1,666 app contexts in total, including 651 legitimate
contexts, and 1,015 illegitimate contexts, and use 10 fold
cross-validation on these instances. We randomly partition
all instances into 10 equal sized subsets. One of them is then
chosen as the testing data, and the rest 9 subsets are used as
training data. The procedure is repeated 10 times with dif-
ferent testing data sets.

Given TP = number of true positives, FN= number of false
negatives, FP = number of false positives and TN = number
of true negatives, the prediction efficiency of the model is
measured by the followingmetrics: Precision¼ TP

TPþFP , Recall
¼ TP

TPþFN, F-measure¼ 2TP
2TPþFPþFN.

The first three rows in Table 4 give the classification
results for each of the three classifiers. We note that the
three supervised learning algorithms perform closely
regarding our dataset. The forth row gives the final result
after voting is applied. Among the 1,666 contexts, three clas-
sifiers reach a consensus on 1,558 instances, including 947
illegal samples and 611 legal samples. Within the 1,558
instances, our model predicts 1,489 of them correctly, giving
a prediction rate of 95.6 percent. The percentage of aban-
doned samples is low (6.7 percent for illegal cases and 6.1
percent for legal cases) and the impact is acceptable.

6.2 TrafficAnalyzer

We collected 2,125 nonfunctional flows from the 947 illegal
app contexts identified by AppInspector. Among them, 116
flows are false positives as AppInspectormisclassified their
associated app context in the last stage.We have also collected
3,870 normal flows including both non-sensitive flows from
apps that do not ask for cared permissions and functional
sharing flows recognized behind the legal contexts. We then
apply logistic regressionwith L1 or L2 regularization on these
traffic flows to construct our flow classificationmodel.

The results of ourmodel with five-fold cross-validation are
given in Tables 5 and 6. Table 5 shows the prediction result
when the instances are labeled using the predictor built in last

subsection, from the evaluation of AppInspector, while
Table 6 gives the result when true instance labels are used in
the training of the traffic model. We make the following
observations:

� The traffic classification model achieves 94.1 percent
F-measure by using both statistical and lexical fea-
tures, even when some app contexts are potentially
mislabeled due to the inaccuracy of themodel created
by AppInspector. When the true running instance
classes are used for the mislabled 116 nonfunctional
flows, the F-measure increases to 96.2 percent. There-
fore, the utilization of AppInspector only incurs a
slight loss in accuracy, while saving the effort of man-
ually labeling a large number of instances.

� Lexical features alone can provide relatively good
predication accuracy, which can be further improved
by including statistical features. Among the set of
most useful lexical features shown in Table 5, ‘locat’,
‘jpg’, ‘lat’, ‘lng’ are useful in distinguishing location
and non-location flows, while the rest can be used to
identify nonfunctional traffic. In particular, ‘domob’ is
a good indicator of nonfunctional flows because it is
one of the largest analytical service providers in China.

� Indicated by the F-measure results of the model
using statistical features, our approach can poten-
tially be extended to detect HTTPS flows as well,
even though the lexical features cannot be applied to
HTTPS traffic. The set of statistical features with the
highest impact as shown in Table 5 is consistent with
our observation in Section 5.2.

� We found that more than one thousand nonfunctional
flows contain more than one type of sensitive
resource. This is because ad and analytic services tend
to collect available private data altogether and send
them in a single flow. Although this observation does
not give much help in predicting leakages at the net-
work level as we do not know what data the unseen
traffic will leak, it provides better app audit to detect
nonfunctional flows with the help of existing taint
analysis. By encoding this phenomenon into a feature,
our model achieves 96.465 percent F-measure, with
93.176 percent precision and nearly 100 percent recall,
using the labels assigned by AppInspector.

TABLE 4
App Context Classification Results and Voting

With 10 Fold Cross-Validation

Algorithm Precision Recall F-measure

Random Forest 86.887% 93.283% 89.972%
Linear SVM 87.865% 93.770% 90.722%
Logistic Regression 87.353% 95.106% 91.065%
Voting 94.229% 98.852% 96.485%

TABLE 5
Traffic Classification Results With the Labels Predicted by AppInspector

Features Precision Recall F-measure Attributes with highest influences

Statistical 69.100% 86.606% 76.856% downlink packet size: mean, max, std. devn, interval
between packets: mean, TCP packet count

Lexical 89.573% 97.175% 93.215% ‘loc’, ‘stat’, ‘jpg’, ‘ads’, ’domob’, ‘lat’, ‘lng’, ’share’
Both 90.277% 98.281% 94.099%

TABLE 6
Traffic Classification Results With True Instance Label

Features Precision Recall F-measure

Statistical 70.103% 85.242% 76.919%
Lexical 95.106% 96.872% 95.970%
Both 94.906% 97.726% 96.289%

3074 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

Improved Sensitive Flow Detection. In addition to achieving
a promising detection accuracy, our learning model is able
to detect new sensitive flows that are undetectable by
TaintDroid, which highlights the advantage of having
network level signatures. To confirm this, we randomly
select 5,510 flows generated by 670 running instances that
TaintDroid does not report any leakage. Among these
flows, our model detected 234 of them to be nonfunctional
sharing. We then check the ground truth for each of these
flows manually. The result is shown in Table 7. In the table,
the ‘Unknown’ column indicates the cases where we cannot
identify the ground truth, when the traffic is encrypted and
the URLs are not familiar. Our model is able to detect 185
nonfunctional flows correctly, all of which are missed by
TaintDroid. The result shows that our learning model is
able to identify location sharing flows that are missed by
host-based taint analysis, which strongly indicates the bene-
fit of considering network level features.

Stealthy Nonfunctional Flows. As mentioned in Section 3,
nonfunctional sensitive flows may hide themselves behind
legal app contexts, which may introduce more damages
due to the fact that users would grant the apps permission
to access the protected resources. In order to detect this
kind of stealthy malicious traffic, we apply the traffic classi-
fier (trained using the labels assigned by AppInspector)

to distinguish functional and nonfunctional sensitive flows
with legal app contexts. 495 testing sensitive flows are
picked in random. The prediction outcomes are shown in
the Table 8. It reports 157 flows in total, and successfully
find 142 true nonfunctional flows, giving 92.4 percent accu-
racy. Moreover, we can leverage the fact that ads tend to col-
lect all sorts of sensitive data in one flow to generate a more
effective model. Overall, in addition to the existing access
controls, our approach offers another dimension of protec-
tion of user privacy.

Flow Clustering. Purely based on nonfunctional sensitive
HTTP flows, we can also derive the clusters with similar
characteristics, and generate the corresponding network sig-
natures for well-known NIDS such as Snort. To this end,
we divide the flows into groups based on the shared invari-
ant content in their URLs and follow the procedure
described in [30] to generate a token-subsequence signature
for each group. Each signature represents an ordered list of
invariant tokens and can be written as a regular expression.
An example of the generated signatures is shown in Fig. 7,
which can be written as a regular expression of the form

t1.*t2.*...tn.*, where each ti is an invariant token
that is identical in all the requests within the same group.
Every signature is composed by the token sets of path and
query. Path represents the visiting destination and it is first
part of a URL. Queries are the parameters attached to URL
path. In our example, t1 is a token presenting the path of
the underlying URLs and t2� t5 are the queries. The regu-
lar expression can then be conveniently converted to a sig-
nature for traditional NIDS platforms that are unable to
deploy machine learning models. From 2,125 nonfunctional
sensitive HTTP flows, we obtain 291 network signatures in
total. 15 of them (e.g., /.*[.]json) are too generic to be
used alone in practice. The nonfunctional flows that contrib-
ute to these signatures convey the private data deeply in
their payload (e.g., a json file) rather than directly encod-
ing them into the URLs. Attaching their domain names to
their signatures is one way to detect those flows at NIDS.

Each token-subsequence signature is a determined char-
acteristic of specific flows, and therefore, may not scale well
to cover the future variants. In order to detect as many var-
iants as possible, we make a further refinement by merging
the signatures that share sufficient similar content.We define
ameasure of distance between two signatures si and sj as

dsðsi; sjÞ ¼ wpdpðsi; sjÞ þ wqdqðsi; sjÞ; (1)

where dpðsi; sjÞ is the distance between the paths of two sig-
natures and wp is its pre-defined weight; similarly, dqðsi; sjÞ
and wq are the distance and the weight for the queries,
respectively. dqðsi; sjÞ is calculated from the Jaccard distance11

between the query token sets of two signatures. For path
distances we partition the paths into sub tokens, which nat-
urally form the sets to help calculate the Jaccard distance.
dpðsi; sjÞ is therefore defined as the Jaccard distance between
the path token sets of si and sj. A two-dimensional distance
matrix can then be computed by calculating ds for every
i; j 2 N where N is the index set representing all the signa-
tures before merging. We finally feed the pair-wise distance
matrix to the single-linkage hierarchical clustering algo-
rithm [29], which returns a tree-like data structure whose
leaves represent the original signatures and edge lengths
are the distances between clusters. For instance, Fig. 8 gives
an example of a hierarchical clustering tree branch.

From the branch we know that the distance between the
two signatures is small so that they can be combined into a
single new signature. Specifically, the 2 paths are com-
pressed into /api/.*[.]json[?] and the sets of queries
can be summarized as the queries of the first signature,
with &isLat removed. Putting two parts together, we get a
new signature /api/.*[.]json[?]latlon=.*&devi-

ceId=.*&v=.*. We observe that certain signatures are
short (e.g, length <¼ 3). In this case, we keep them
untouched even if the distances among them is small to

TABLE 7
Prediction Results on Non-Sensitive

Flows Reported by TaintDroid

Total reported True nonfunctional sensitive flows Unknown

234 185 21

TABLE 8
Prediction Results on Sensitive Flows

Behind Legitimate App Contexts

Total sensitive flows Predicted nonfunctional flows False positives

495 157 15

Fig. 7. Example of token-subsequence signature.

11. The Jaccard distance between two sets A and B is 1� jA\Bj
A[B

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3075

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

avoid generating useless generic signatures. We derive 211
signatures in total after conducting the signature clustering.

The detection would be meaningless without maintain-
ing a low false positive rate. We therefore test our 211 signa-
tures on the 3,870 normal flows collected before. 8 of them
(Table 9) generate 84 false positives (2.17 percent). After fur-
ther inspection, we notice that most of them are also generic
signatures, but are harder to be noticed. For example, the
signature /portal/home[.]do[?]l=.* generates the
false alarm for a legal request collected from an airline app
(http://m.staralliance.com/portal/home.do?
l=en_US). Other false positives are the HTTP requests that
match the signatures generated from the leaking adwares.
However, although they are truly advertisement flows, they
do not convey any sensitive private data. Including these
signatures is problematic. As mentioned earlier, for those
signatures that may cause false positives, taking advantage
of them in a conservative way, such as combining them
with the hostnames, is recommended.

7 RELATED WORK

Program Analysis. Static and dynamic program taint analysis
of apps focus on identifying whether sensitive data leaves
the user device. For example, TaintDroid [14] tries to
resolve privacy breach by modeling the behavior of an app
through dynamic analysis, whereas FlowDroid [4] and
DroidSafe [18] adopt static approaches to model the app
behavior through byte code inspection. In addition to taint
analysis, Agrigento [9] performs black-box differential
analysis to detect privacy leakage. After all, all of the above
approaches treat all sensitive transmissions as illegal, thus
suffering from high false positive rates. BayesDroid [45]
attempts to mitigate the issue by probabilistic reasoning a
leak based on the proximity between the data at both source
and sink points.

Detection Based on Visual Context. AppFence [21] first
unveils the potential of UI data in detecting unintended
nonfunctional app behavior with a customized permission
control. AppIntent [54] further detects the mismatch
between visual information and app behavior through sym-
bolic execution. However, these studies requires heavy user
involvement to manually inspect each exposed behavior.
Whyper [33] and CHABADA [19] model app context through
app’s description and check it with permissions and APIs.

We argue that app description is coarse grained and does
not reflect detailed run-time behaviors. AsDroid [22]
defines certain policies to examine mismatch between key-
words on limited visible buttons and underlying codes.
Ringer et al. [39] design a set of GUI widgets to regulate
resource access triggered from UI. They do not provide
automatic solutions and cannot scale well to countless app
implementations. Rubin et al. [40] check whether a given
communication have visual impact. It treats any sensible
disclosure, including the one abounding with ads, as legal,
and therefore, are inevitable to ignore a lot of real harmful
exposures. DroidJust [8] and LeakDoctor [48] correlate
privacy disclosures with user sensible phone states to justify
their legitimacy. However, the transmissions used by adver-
tisements also cause noticeable state changes, and without
further examination of the semantic of contextual informa-
tion like FlowIntent, it would be mistakenly treated as
functional. Recently, several research efforts attempt to infer
context-aware security policies from users’ behavioral
traits [31], [49], [50]. They notice that app visibility is most
influential towards the users’ decisions on access control of
mobile apps. Inspired by this, COSMOS [17], Backstage [5]
and FlowCog [32] detect suspicious resource accesses by
analyzing the textual information shown on the foreground
windows with supervised learning or unsupervised learn-
ing. Their approaches only involve UI-related elements,
which touch upon a subset of the features that FlowIntent
considers. Also, without further learning from the traffic of
nonfunctional accesses, they are unable to recognize mali-
cious sensitive traffic stealthily hide themselves behind
legal UI.

Traffic Profiling. Another thread of research that is rele-
vant to our work is internet traffic monitoring and traffic
classification, which has been used for determining differ-
ent protocols and applications being used by the users. As
discussed in [24] (and the references therein), these methods
can also be used for anomaly detection [23], location catego-
rization [13], as well as malware detection. A number of
research works have focused on the detection of malicious
traffic from network data (more specifically HTTP traces
and URLs) using machine learning techniques [27], [35],
[37]. In contrast, we focus on automatically identifying pri-
vacy disclosure caused by both authentic apps and mobile
malwares with the help of context-aware modeling, instead
of identifying malicious traffic generated from certain mali-
cious samples. Recon [38] is closest to FlowIntent. Simi-
lar to FlowIntent, it also focuses on HTTP(S) flows
collected from mobile devices and attempts to identify the
traffic patterns leading to PII leaks. Unlike FlowIntent

that can automatically generate suspicious traffic by exercis-
ing and inspecting the new apps, manually labeled flows
are continuously required by Recon to keep pace with the
fast evolution of malicious apps. More importantly, Flow-
Intent goes beyond the goal of Recon. FlowIntent does
not limit itself to identifying PII flows only, it is able to fur-
ther distinguish functional and nonfunctional flows.

Fig. 8. An example hierarchical clustering tree branch.

TABLE 9
The Signatures That Cause False Positives

/portal/home[.]do[?]l=.*

/ExibeXML[.]php[?]USUARIO=.*&CODCIDADE=.*

/wxengine/rest/sst/getDates

/v1/query.json[?]databases=.*

/api/statis/.*

/ad/getAdList.do?t=.*

/index[.]php[?]m=.*&token=.*&appVersion=.*

/api/groups[?]session[_]key=.*

3076 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

http://m.staralliance.com/portal/home.do?l=en_US
http://m.staralliance.com/portal/home.do?l=en_US

8 DISCUSSION

The Impact of Subcomponents on Accuracy. The overall perfor-
mance of FlowIntent depends on the effectiveness of
AppInspector and TrafficAnalyzer. AppInspector

relies on two building blocks, namely TaintDroid and
COSMOS. The former is a popular tool used in many impor-
tant works in this field including BayesDroid and Agri-

gento, while the latter is leveraged to trigger potential app
sensitive behaviors. False negatives in TaintDroid and
COSMOS lead to the missing of nonfunctional sensitive flows
that we care about, which is unfortunately difficult to verify
due to the lack of source code of the third-party applica-
tions. False positives in TaintDroid may finally result in
false positives in FlowIntent such that non-sensitive
flows may be misclassified as nonfunctional sensitive flows.
Fortunately, one major advantage of dynamic analysis over
static analysis is the much smaller number of false positives.
As stated in the original paper of TaintDroid [14], on the
107 connections collected from commercial apps and
reported by TaintDroid, the manual inspection of each
network packet trace confirmed that there were no false
positives. False positives in COSMOS result in unnecessary
exploits of non-harmful program paths, but would not
directly impact the overall accuracy.

For TrafficAnalyzer, when the app context and traffic
reported by COSMOS-guided TaintDroid is fed to the train-
ing process, the experts could mistakenly label the instances
and machine learning algorithms also have inherent accu-
racy limitations. A voting-based mechanism is adopted to
reduce the number of false positives and false negatives at
this stage. The techniques behind TrafficAnalyzer have
been proven effective in various traffic-based applications
and scenarios. Specifically, lexical features are well-recog-
nized by their successful application in identifyingmalicious
Web sites through their URLs, the resulting classifiers obtain
95�99 percent accuracywith onlymodest false positives [27].
ReCon [38] is another highly related work and entirely relies
on the keywords in URLs and achieved 98.1 percent accuracy
in identifying privacy leaks in mobile network traffic. Statis-
tical features were used in [37] to detect malicious traffic in
wireless/mobile networks and achieved 89.2 percent F-
score. If necessary, payload-based inspection can be further
integratedwith additional cost to increase the robustness.

Generalization to Other Types of Resources. The ultimate goal
of FlowIntent is to provide a generic approach to detect
unauthentic leakages from all kinds of resources depending
on the use cases and the distribution of real-life data. In this
paper, we focus on location and phone id since they are the
most exploited resources based on themalicious trafficwe col-
lected. But our approach could be extended to other kinds of
resources, such as camera, microphone, storage, and contacts.

We have investigated the major functionalities fulfilled by
transferring data generated by these resources and listed
them in Table 10. We notice that none of them are completely
transparent to users and all of them involve certain context
information, which suggests that the motivation behind
FlowIntent is still valid. It is possible that more advanced
techniques to process app descriptions and UI data are
needed to handle them, which would serve as an interesting
future research topic.

Robustness. Ideally, we would like to keep the detection
scheme as a blackbox for adversaries. But similar to existing
learning based detection methods [3], [19], [36], [47], [53],
[55], FlowIntent could be bypassed with feature engi-
neering through carefully designed evasion logic. However,
we believe the design philosophy of FlowIntent makes
such attacks more difficult to succeed. Thanks to the exami-
nation of app context, the adversary can only target apps
that seem to be legitimate to transfer the data of protected
resources, which greatly limits the potential attack surface.

Compared to the features such as method names used in
previous approaches [47], our method is more robust due to
the fact that the visual data are resilient to code obfuscation.
However, an adversary could come up with new obfusca-
tion methods over visual data to bypass our detection
method in the future. We envision that the integration of
FlowIntent and other orthogonal work will be needed for
a more advanced defense.

FlowIntent currently treats all sensitive flows under ille-
gal contexts as nonfunctional. It is possible that a smart mal-
ware first sends sensitive data to a totally legal inquiry service
provider, and then forward the feedback to a malicious
receiver. This could confuse the classifier by blurring the
boundary between functional and nonfunctional flows. Fortu-
nately, there are only limited sensitive-data related lookup
services and we can manually add them into a white list. It is
desired to consider this kind of indirect leakage in the future.

As one of the first work in this thread, AppInspector
currently does not perform further inspection on the follow-
up dialogues. Fortunately, for a benign app with complex
functionalities, the initial window typically conveys enough
information to indicate the purpose. As indicated by Goo-
gle, complication in UI design affects user experience in a
negative way and can make flows, paths, and choices hard
to understand [1]. AppInspector attempts to locate the
Activity that leads to the sensitive access, which normally is
the initial window of a specific functionality. We leave the
support of multiple window inspection to future study.

Also, due to the limited time and resources, mislabelling
of training data is inevitable. Thus, it is important to have
more participants to reduce label noise.

Leakage Over Encrypted Channels. For encrypted channels
such as HTTPS, statistical features are still helpful to detect
nonfunctional traffic to some degree. Moreover, it is possible
to route traffic over a controlled environment, such as a
trusted virtual private network (VPN) tunnel (on-device [25],
[42] or not [38]) with SSLsplit

12 integrated, to decrypt the
communications over SSL and extract more complete net-
work level features.

TABLE 10
The Functionalities Supported by the Sensitive Transmissions

Resource Functionality

Contact contacts matching in social app, contact backup, etc

Storage album, document synchronization, documents editing, etc

Camera photo/video taking, barcode scan, etc

Microphone voice assistant, voice message, etc

12. https://www.roe.ch/SSLsplit

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3077

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

https://www.roe.ch/SSLsplit

Leakage Over Other Protocols. Although HTTP(S) is the
prevalent channel to deliver sensitive data, it is not the only
transmitting protocol. For example, some existing Android
malware families such as AndroRAT13 directly utilize trans-
port layer protocols (i.e., TCP and UDP) for command and
control (C&C) purpose, which is transparent to the detection
strategies designed for application layer protocols like HTTP
(S). Extracting features and signatures for every possible pri-
vacy-disclosure protocol is helpful to mitigate the issue. In
the meantime, improving the efficiency and the effectiveness
of app audit to purge thesemalwares in advance.

Security-Centered UI Exerciser. Our prior work [15] lists a
bunch of research efforts that try to automatically trigger secu-
rity or privacy related behaviors inmobile apps. However, the
problem of accurately preserving the user interfaces while
effectively exposing sensitive behaviors largely remains open.
Based on the result in [43], the coverage of the state-of-the-art
GUI testing framework designed for Android is around 60
percent on 93 open-source apps. Creating a smarter security-
centeredUI exerciser is part of our future research.

Labelling.Manually labelling instances is time-consuming
and tedious. As a starting point, “dirty work” is inevitable
andwe hope our effort could contribute to the entire commu-
nity bymaking themalicious dataset we collected public.

Based on the current access control mechanism enforced
on iOS and Android, billions of end users have to decide
whether to grant permissions or not on their smart devices
based on their understanding of app context and behavior.
In other words, a great number of highly-relevant manual
labelling are happening every day. Unfortunately, these
labelling efforts are mostly discarded and wasted. We hope
one day an industrial giant like Google or Apple can take
more efforts to leverage this kind of valuable data without
sacrificing user privacy. We believe the idea behind Flow-

Intent is a plausible way.
Exceptional Scenarios. There are exceptional scenarios that

FlowIntent may not handle correctly. In particular, as
FlowIntent currently focuses on textual information, it is
unable to process icons that do not have meaningful texts/
metadata. Image classification will be required to infer the
images’ topics. Also, due to the limitation of UI exerciser,
FlowIntent will have difficulty unveiling sensitive flows
that may only be triggered by complicated UI interactions.
Moreover, FlowIntent is built on Chinese and English
samples. Extension to other languages is left for future work.

9 CONCLUSION

In this paper, we develop FlowIntent, a proof-of-concept
system that makes the first attempt to automatically identify
the nonfunctional privacy-leaking traffic flows from the
mismatch between app context and network behavior.
Compared to system level detection approaches, our net-
work level signatures are easier to deploy at Intrusion
Detection Systems to monitor a large number of devices
simultaneously, while introducing zero overhead at the end
hosts. FlowIntent also captures the sensitive transmis-
sions missed by traditional taint analysis systems. In con-
trast to previous network level detection techniques that

rely on a given set of malicious domain names, FlowIn-
tent can better adapt to the fast growth of app market and
new leakage patterns through automated feeding of the sus-
picious flows generated from illegal app contexts. We have
built our learning models using 2,125 privacy-sharing
instances and our approach achieves about 94 percent accu-
racy in differentiating between functional and nonfunc-
tional transmissions.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Army Research
Laboratory Cyber Security Collaborative Research Alliance
under Contract Number W911NF-13-2-0045. The views and
conclusions contained in this document are those of the
authors, and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any
copyright notation hereon. The work of Zhu was supported
by the US National Science Foundation CNS-1618684.
Hao Fu and Pengfei Hu are co-first authors.

REFERENCES

[1] Google designer david hogue: How to avoid over-complication in
product design. [Online]. Available: https://modus.medium.
com/google-ux-designer-david-hogue-shares-how-to-reverse-
over-complication-in-product-design-and-how-90c00bcad5d7

[2] Legal – android app permissions. [Online]. Available: https://
www.uber.com/legal/other/android-permissions/

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of android mal-
ware in your pocket,” in Proc. ISOC Netw. Distrib. Syst. Secur.
Symp., 2014.

[4] S. Arzt et al., “FlowDroid: Precise context, flow, field, object-sensi-
tive and lifecycle-aware taint analysis for android apps,” ACM
SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[5] V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, and
A. Zeller, “Detecting behavior anomalies in graphical user inter-
faces,” in Proc. IEEE/ACM Int. Conf. Softw. Eng., 2017, pp. 201–203.

[6] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proc. ACM
Conf. Comput. Commun. Secur., 2016, pp. 356–367.

[7] C. E. Brodley and M. A. Friedl, “Identifying mislabeled training
data,” J. Artif. Intell. Res., vol. 11, pp. 131–167, 1999.

[8] X. Chen and S. Zhu, “DroidJust: Automated functionality-aware
privacy leakage analysis for android applications,” in Proc. 8th
ACM Conf. Secur. Privacy Wireless Mobile Netw., 2015, Art. no. 5.

[9] A. Continella et al., “Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis,” in Proc. ISOC
Netw. Distrib. Syst. Secur. Symp., 2017.

[10] M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and
H. Al Najada, “Survey of review spam detection using machine
learning techniques,” J. Big Data, vol. 2, no. 1, 2015, Art. no. 23.

[11] J. Crussell, R. Stevens, and H. Chen, “MAdFraud: Investigating ad
fraud in android applications,” in Proc. ACM Conf. Mobile Syst.
Appl. Serv., 2014, pp. 123–134.

[12] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“NetworkProfiler: Towards automatic fingerprinting of android
apps,” in Proc. IEEE Int. Conf. Comput. Commun., 2013, pp. 809–817.

[13] A. K. Das, P.H. Pathak, C.-N. Chuah, and P.Mohapatra, “Contextual
localization through network traffic analysis,” in Proc. IEEE Int. Conf.
Comput. Commun., 2014, pp. 925–933.

[14] W. Enck et al., “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” ACM Trans.
Comput. Syst., vol. 32, no. 2, 2014, Art. no. 5.

[15] H. Fu, Z. Zheng, S. Bose, M. Bishop, and P. Mohapatra,
“LeakSemantic: Identifying abnormal sensitive network transmis-
sions in mobile applications,” in Proc. IEEE Int. Conf. Comput.
Commun., 2017, pp. 1–9.13. https://github.com/DesignativeDave/androrat

3078 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

https://modus.medium.com/google-ux-designer-david-hogue-shares-how-to-reverse-over-complication-in-product-design-and-how-90c00bcad5d7
https://modus.medium.com/google-ux-designer-david-hogue-shares-how-to-reverse-over-complication-in-product-design-and-how-90c00bcad5d7
https://modus.medium.com/google-ux-designer-david-hogue-shares-how-to-reverse-over-complication-in-product-design-and-how-90c00bcad5d7
https://www.uber.com/legal/other/android-permissions/
https://www.uber.com/legal/other/android-permissions/
https://github.com/DesignativeDave/androrat

[16] H. Fu, Z. Zheng, A. K. Das, P. H. Pathak, P. Hu, and P. Mohapatra,
“FlowIntent: Detecting privacy leakage from user intention to net-
work traffic mapping,” in Proc. IEEE Int. Conf. Sens. Commun.
Netw., 2016, pp. 1–9.

[17] H. Fu, Z. Zheng, S. Zhu, and P. Mohapatra, “Keeping context in
mind: Automating mobile app access control with user interface
inspection,” in Proc. IEEE Int. Conf. Comput. Commun., 2019,
pp. 2089–2097.

[18] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of android applica-
tions in droidsafe,” in Proc. ISOC Netw. Distrib. Syst. Secur.
Symp., 2015.

[19] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proc. IEEE/ACM Int. Conf.
Softw. Eng., 2014, pp. 1025–1035.

[20] R. Holley, “How good can it get? Analysing and improving OCR
accuracy in large scale historic newspaper digitisation programs,”
D-Lib Mag., vol. 15, no. 3/4, 2009.

[21] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall,
“These aren’t the droids you’re looking for: Retrofitting android
to protect data from imperious applications,” in Proc. ACM Conf.
Comput. Commun. Secur., 2011, pp. 639–652.

[22] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid:
Detecting stealthy behaviors in android applications by user inter-
face and program behavior contradiction,” in Proc. IEEE/ACM Int.
Conf. Softw. Eng., 2014, pp. 1036–1046.

[23] O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth, “Adaptive anomaly
detection in performance metric streams,” IEEE Trans. Netw. Ser-
vice Manag., vol. 15, no. 1, pp. 217–231, Mar. 2018.

[24] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet traffic classification demystified: Myths, caveats,
and the best practices,” in Proc. ACM Int. Conf. Emerg. Netw.
Experiments Technol., 2008, Art. no. 11.

[25] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou, “AntMonitor: A system for monitoring from
mobile devices,” in Proc. ACM SIGCOMMWorkshop Crowdsourcing
Crowdsharing Big Data, 2015, pp. 15–20.

[26] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proc. ACM Conf.
Mobile Syst. Appl. Serv., 2015, pp. 89–103.

[27] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious URLs,”
in Proc. SIGKDD Conf. Knowl. Discov. Data Mining, 2009,
pp. 1245–1254.

[28] D. K. McGrath and M. Gupta, “Behind phishing: An examination
of phisher modi operandi,” in Proc. USENIX Workshop Large-Scale
Exploits Emergent Threats, 2008, Art. no. 4.

[29] F. Murtagh, “A survey of recent advances in hierarchical cluster-
ing algorithms,” Comput. J., vol. 26, no. 4, pp. 354–359, 1983.

[30] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically
generating signatures for polymorphic worms,” in Proc. IEEE
Symp. Secur. Privacy, 2005, pp. 226–241.

[31] K. Olejnik, I. I. Dacosta Petrocelli, J. C. SoaresMachado, K.Huguenin,
M. E. Khan, and J.-P. Hubaux, “SmarPer: Context-aware and auto-
matic runtime-permissions for mobile devices,” in Proc. IEEE Symp.
Secur. Privacy, 2017, pp. 1058–1076.

[32] X. Pan et al., “FlowCog: Context-aware semantics extraction and
analysis of information flow leaks in android apps,” in Proc. USE-
NIX Secur. Symp., 2018, pp. 1669–1685.

[33] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER:
Towards automating risk assessment of mobile applications,” in
Proc. USENIX Secur. Symp., 2013, pp. 527–542.

[34] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “AdDroid:
Privilege separation for applications and advertisers in
android,” in Proc. ACM ASIA Conf. Comput. Commun. Secur.,
2012, pp. 71–72.

[35] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
HTTP-based malware and signature generation using malicious
network traces,” in Proc. USENIX Symp. Netw. Syst. Des. Implemen-
tation, 2010.

[36] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, andZ. Chen, “AutoCog:
Measuring the description-to-permission fidelity in android
applications,” in Proc. ACM Conf. Comput. Commun. Secur., 2014,
pp. 1354–1365.

[37] A. Raghuramu, H. Zang, and C.-N. Chuah, “Uncovering the foot-
prints of malicious traffic in cellular data networks,” in Proc. Int.
Conf. Passive Active Meas., 2015, pp. 70–82.

[38] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “ReCon:
Revealing and controlling PII leaks in mobile network traffic,” in
Proc. ACM Conf. Mobile Syst. Appl. Serv., 2016, pp. 361–374.

[39] T. Ringer, D. Grossman, and F. Roesner, “AUDACIOUS: User-
driven access control with unmodified operating systems,” in
Proc. ACM Conf. Comput. Commun. Secur., 2016, pp. 204–216.

[40] J. Rubin, M. I. Gordon, N. Nguyen, and M. Rinard, “Covert com-
munication in mobile applications,” in Proc. 30th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2015, pp. 647–657.

[41] S. Shekhar, M. Dietz, and D. S. Wallach, “AdSplit: Separating
smartphone advertising from applications,” in Proc. USENIX
Secur. Symp., 2012, Art. no. 28.

[42] Y. Song and U. Hengartner, “PrivacyGuard: A VPN-based plat-
form to detect information leakage on android devices,” in Proc.
ACM CCS Workshop Secur. Privacy Smartphones Mobile Devices,
2015, pp. 15–26.

[43] T. Su et al., “Guided, stochastic model-based GUI testing of
android apps,” in Proc. 11th Joint Meet. Found. Softw. Eng., 2017,
pp. 245–256.

[44] G. Suarez-Tangil and G. Stringhini, “Eight years of rider measure-
ment in the android malware ecosystem: Evolution and lessons
learned,” 2018, arXiv: 1801.08115.

[45] O. Tripp and J. Rubin, “A Bayesian approach to privacy enforce-
ment in smartphones,” in Proc. USENIX Secur. Symp., 2014,
pp. 175–190.

[46] F. Wang, Y. Zhang, K. Wang, P. Liu, and W. Wang, “Stay in your
cage! A sound sandbox for third-party libraries on android,” in
Proc. Eur. Symp. Res. Comput. Secur., 2016, pp. 458–476.

[47] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the
purpose of permission use in mobile apps,” in Proc. ACM Int. Joint
Conf. Pervasive Ubiquitous Comput., 2015, pp. 1107–1118.

[48] X. Wang, A. Continella, Y. Yang, Y. He, and S. Zhu, “LeakDoctor:
Toward automatically diagnosing privacy leaks in mobile
applications,” Proc. ACM Interactive Mobile Wearable Ubiquitous
Technol., vol. 3, no. 1, pp. 28:1–28:25, 2019.

[49] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on
contextual integrity,” in Proc. 24th USENIX Secur. Symp., 2015,
pp. 499–514.

[50] P. Wijesekera et al., “The feasibility of dynamically granted per-
missions: Aligning mobile privacy with user preferences,” in Proc.
IEEE Symp. Secur. Privacy, 2017, pp. 1077–1093.

[51] M. Y. Wong and D. Lie, “IntelliDroid: A targeted input generator
for the dynamic analysis of android malware,” in Proc. ISOC
Netw. Distrib. Syst. Secur. Symp., 2016.

[52] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time
android application auditing,” in Proc. IEEE Symp. Secur. Privacy,
2015, pp. 899–914.

[53] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck,
“AppContext: Differentiating malicious and benign mobile app
behaviors using context,” in Proc. IEEE/ACM Int. Conf. Softw. Eng.,
2015, pp. 303–313.

[54] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing sensitive data transmission in android for
privacy leakage detection,” in Proc. ACM Conf. Comput. Commun.
Secur., 2013, pp. 1043–1054.

[55] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware
android malware classification using weighted contextual API
dependency graphs,” in Proc. ACM Conf. Comput. Commun. Secur.,
2014, pp. 1105–1116.

[56] Y. Zhang et al., “Detecting third-party libraries in android applica-
tions with high precision and recall,” in Proc. IEEE Int. Conf. Softw.
Anal. Evol. Reeng., 2018, pp. 141–152.

[57] Y. Zhou and X. Jiang, “Dissecting android malware: Characteriza-
tion and evolution,” in Proc. IEEE Symp. Secur. Privacy, 2012,
pp. 95–109.

Hao Fu received the PhD degree in computer
science from the University of California, Davis,
California, in 2019. He was supervised by
Dr. Prasant Mohapatra. His research interests
include network and systems security, machine
learning, and program analysis. He has published
more than ten papers in relevant reputed confer-
ences, including INFOCOM, SECON, CoNext,
MILCOM, etc. He was also a reviewer of CCS,
CNS, ACNS,MILCOM, etc.

FU ET AL.: TOWARDS AUTOMATIC DETECTION OF NONFUNCTIONAL SENSITIVE TRANSMISSIONS IN MOBILE APPLICATIONS 3079

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

Pengfei Hu received the PhD degree in com-
puter science from the University of California,
Davis, California. He is currently a professor with
the School of Computer Science and Technol-
ogy, Shandong University. Before joining Shan-
dong University, he was a researcher with
VMWare xLab. His PhD supervisor is Prof. Pra-
sant Mohapatra. His research interests include
the areas of cyber security, data privacy, mobile
computing. He has published more than 20
papers in reputed conferences and journals on

these topics, including the IEEE Communications Surveys & Tutorials,
the IEEE Transactions on Mobile Computing, the IEEE Transactions on
Dependable and Secure Computing, INFOCOM, CoNEXT, SECON,
MILCOM, etc. He also holds five patents in the area of mobile comput-
ing. He served as reviewer for numerous journals and conferences
including the IEEE Transactions on Information Forensics and Security,
the IEEE Journal on Selected Areas in Communications, the IEEE
Transactions on Mobile Computing, the IEEE Transactions on Wireless
Communications, SECON, CNS, WCNC, MILCOM, etc.

Zizhan Zheng (Member, IEEE) received the MS
degree in computer science from Peking Univer-
sity, Beijing, China, in 2005, and the PhD degree in
computer science and engineering from the Ohio
State University (OSU), Columbus, Ohio, in 2010.
He worked as a postdoctoral researcher with OSU
from 2010 to 2014 and as an associate specialist
with UC Davis from 2014 to 2016. He joined
Tulane University as an assistant professor in
2016. His research interests include the areas of
networking, security, andmachine learning.

Aveek K. Das received the BE degree in elec-
tronics and tele-communication engineering from
Jadavpur University, Kolkata, West Bengal, India,
in 2012, and the PhD degree in computer science
from the University of California, Davis, Califor-
nia, working on content-aware network data min-
ing. He is currently a security researcher with
Forescout Technologies. His current research
interests include network security, data analytics,
and IoT and healthcare security.

Parth H. Pathak received the PhD degree in com-
puter science fromNorth Carolina State University,
Raleigh, North Carolina, in 2012. He is currently an
assistant professor with the Computer Science
Department, George Mason University. His resea-
rch interests include mobile and ubiquitous com-
puting, energy-efficient sensing, Internet-of-Things
systems, wireless networking, and network analyt-
ics. He is a recipient of the Award for Excellence
in postdoctoral research with the University of
California, Davis, in 2015. He has also received
the Best Paper Award at IFIP Networking 2014
conference.

Tianbo Gu received the BS degree from Hang-
zhou Dianzi University, Hangzhou, China, in
2010, and the MS degree from the University of
Science and Technology of China, Hefei, China,
in 2013. In 2012, he received National Scholar-
ship which is the top award for graduate students
in China. He is currently working toward the PhD
degree in the Department of Computer Science,
University of California, Davis, California. His
research interests include Internet of Things,
edge computing, and smart sensing.

Sencun Zhu received the BS degree in precision
instruments from Tsinghua University, Beijing,
China, in 1996, the MS degree in signal process-
ing from the University of Science and Technology
of China, Graduate School at Beijing, in 1999, and
the PhD degree in information technology from
George Mason University, Fairfax, Virginia, in
2004. He is currently an associate professor with
Penn State University. His research interests
include wireless and mobile security, network and
systems security, and software security. Among

many academic services, he is the editor-in-chief of the EAI Transactions
on Security and Safety and an associate editor of the IEEE Transactions
onMobile Computing.

Prasant Mohapatra (Fellow, IEEE) received the
doctoral degree from Penn State University,
State College, Pennsylvania, in 1993. He is serv-
ing as the vice chancellor for research with
the University of California, Davis. He is also a
distinguished professor with the Department of
Computer Science and served as the dean
and vice-provost of Graduate Studies during
2016-2018. He was the department chair of com-
puter science during 2007-2013. In the past, he
has also held visiting scientist positions with Intel

Corporation, Panasonic Technologies, Institute of Infocomm Research
(I2R), Singapore, and National ICT Australia (NICTA). He received an
Outstanding Engineering Alumni Award in 2008. He is also the recipient
of Distinguished Alumnus Award from the National Institute of Technol-
ogy, Rourkela, India. He received an Outstanding Research Faculty
Award from the College of Engineering, University of California, Davis.
He received the HP Labs Innovation awards in 2011, 2012, and 2013.
His research interests include the areas of wireless networks, mobile
communications, cybersecurity, and Internet protocols. He has pub-
lished more than 350 papers in reputed conferences and journals on
these topics. His research has been funded through grants from the
National Science Foundation, US Department of Defense, US Army
Research Labs, Intel Corporation, Siemens, Panasonic Technologies,
Hewlett Packard, Raytheon, and EMC Corporation. He is a fellow of
the AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3080 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 10, OCTOBER 2021

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 07,2021 at 13:35:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

