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Towards Unconstrained Vocabulary
Eavesdropping with mmWave Radar using GAN

Pengfei Hu, Wenhao Li, Yifan Ma, Panneer Selvam Santhalingam, Parth Pathak, Hong Li,
Huanle Zhang, Guoming Zhang, Xiuzhen Cheng, Fellow, IEEE , Prasant Mohapatra, Fellow, IEEE

Abstract—As acoustic communication systems become increasingly common in our daily life, eavesdropping brings severe security
and privacy risks. Current methods of acoustic eavesdropping either provide low resolution due to the use of sub-6 GHz frequencies,
work only for limited words based on classification approaches, or cannot work through-wall because of the use of optical sensors. In
this paper, we present MILLIEAR, a mmWave acoustic eavesdropping system that leverages the high-resolution of mmWave FMCW
ranging and generative machine learning models to not only extract vibrations but to reconstruct the audio. MILLIEAR combines
speaker vibration estimation with conditional generative adversarial networks to eavesdrop and recover high-quality audios (i.e., with
no vocabulary constraints). We implement and evaluate MILLIEAR using off-the-shelf mmWave radars deployed in different scenarios
and settings. Evaluation results clearly show that MILLIEAR can accurately reconstruct the audio even at different distances, angles,
and through the wall with different insulator materials. In addition, our subjective and objective evaluations demonstrate that the
reconstructed audio has a strong similarity with the original audio.

Index Terms—Acoustic Eavesdropping, mmWave Radar, Vibration Sensing, Generative Adversarial Network

✦

1 INTRODUCTION

A COUSTIC communication systems such as video con-
ferencing, personal digital assistants, and home en-

tertainment are becoming increasingly popular. While our
digital communication (data transmission) over the Internet
is protected through encryption techniques, the “last hop” of
the acoustic communication systems, i.e., the voice emitting
from speakers, is unencrypted. This unencrypted informa-
tion coming from the speaker can reveal highly private or
confidential information. Therefore, acoustic eavesdropping
poses major security and privacy risks, considering the
increasing prevalence of acoustic communication systems
in homes and offices.

Acoustic eavesdropping attacks have been studied ex-
tensively where the core idea is to capture the vibrations
generated by a speaker using different types of sensors. As
an example of the “in-room” category of attacks, an IMU
sensor can be used to listen to acoustic signals [1]–[4]. While
these methods primarily operate by placing the sensor in the
same room as the speaker or pre-installed on the victim’s de-
vices, “outside-room” attacks can remotely eavesdrop while
being next door or farther away from the audio source. For
example, high-speed cameras [5], lasers [6], photodiodes
[7], or WiFi signals [8], [9] have been used for remotely
discerning the spoken text through vibrations. Compared to
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“in-room” eavesdropping, “outside-room” eavesdropping
is more difficult to prevent, and thus posees a higher risk.

In this paper, we target the “outside-room” scenario,
where the attacker device has no near access to the victim.
We propose to leveraging wireless communications as they
can penetrate walls or soundproof windows. Specifically, we
present MILLIEAR, a system that combines the high sensing
resolution through mmWave signals and the regenerative
capabilities provided by machine learning models to create a
highly effective acoustic eavesdropping attack. It addresses
many limitations of the prior attack systems including the
following aspects:

1) Higher resolution: The sensing resolution is closely re-
lated to the wireless bandwidth. Therefore, compared
to existing RF-based eavesdropping systems that op-
erate at sub-6 GHz frequencies [8], [9], MILLIEAR uses
a mmWave FMCW radar that can leverage the large
available bandwidth at mmWave spectrum to provide
better range resolution. As we show in this work,
speaker vibrations of as low as tens of microns can
be detected using a mmWave radar for accurate eaves-
dropping.

2) Unconstrained vocabulary: Majority of existing eaves-
dropping systems such as [1]–[4], [8]–[10] regard acous-
tic signal extraction as a classification problem by pro-
filing a handful of words. That is, their systems classify
each eavesdropped sound to one of the pre-defined
limited words (e.g., good, happy, thanks). Generally, the
number of words in their systems is within hundreds
at most, as the model becomes untractable to classify
more words. In practice, however, the content of hu-
man conversation is extremely diverse and thus pre-
defining a small set of words does not work well for
real eavesdropping attacks. In comparison, MILLIEAR
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demonstrates the attack with unconstrained vocabulary
as it does not require training for classifying words.
Instead, it provides the reconstruction of entire conver-
sational audio entirely from the mmWave vibrations.

3) Remote, low-cost and smaller sensor footprint: Unlike [11]
and [12] eavesdropping systems which only work when
spyware is pre-installed in the victim’s systems or
devices, MILLIEAR works even behind glass, wooden
doors, and walls. Compared to [5], [6] and [7] which
require expensive camera sensors, laser transducer or
telescope, mmWave radars are low-cost and will be-
come an integral component for next-generation smart-
phones (5G/6G communications). Furthermore, due to
the much smaller wavelength of mmWave signals, the
sensor footprint is significantly smaller compared to
the large multi-antenna system setup required by sub-6
GHz frequencies.

However, building a high-quality mmWave-based eaves-
dropping system for the unconstrained vocabulary attack
entails several challenges, including:
(1) Speaker vibration extraction using mmWave radar signals

in the presence of multi-path noise. The signal received at
mmWave radar sensor consists of both the signal re-
flected from the vibrating speaker as well other nearby
objects. The multipath effect greatly affects the signal
quality. To launch an eavesdropping attack in a real-
world scenario, we should design an accurate vibration
extraction scheme in the presence of multi-path noise.
To address this problem, we measure the phase changes
through virtual sub-chirps. Specifically, we firstly apply
a sliding window on the raw mmWave data to generate
sub-chirps. Then, we apply a range-FFT to the sub-
chirps for deciding the candidate vibration bins and
other bins (i.e., mmWave noise sources). Last, we apply
a Doppler-FFT on the refined bins to help us extract the
vibrations from the speaker.

(2) Accurate reconstruction of the audio from mmWave vibra-
tions with unconstrained vocabulary. The audio captured
through mmWave signals can contain any unknown
words. This means that we need an machine learning
model that can not only classify the existing words
based on limited training, but can also learn to recon-
struct the acoustic components of any word based on
prior training. We address this problem by developing
a conditional generative adversarial network (cGAN)
that uses mel-spectrograms as images to enhance the
mmWave vibration extraction. The cGAN is trained
using spectrograms of original audio and their cor-
responding mmWave captured data, by learning to
enhance the mmWave spectrogram to the ones similar
to the original. Our cGAN model can remove noise and
add representative acoustic components for accurate
audio reconstruction.

We implement and evaluate MILLIEAR using off-the-
shelf mmWave radars and deploy them in different scenar-
ios and settings. The evaluation results show that MILLIEAR
achieves a high similarity between the the reconstruction
audio and the original audio. Our contributions can be
summarized as follows:

• We present a mmWave acoustic eavesdropping sys-

tem, named MILLIEAR, that uses off-the-shelf mmWave
FMCW radar to accurately capture speaker vibrations.
The captured speaker vibrations are then enhanced
through a generative machine learning model that re-
quires no prior knowledge of the words in the audio
signals. Our model can recreate high-quality audio
signal directly from the mmWave radar signals by
leveraging cGANs.

• We perform an extensive evaluation of MILLIEAR. We
use audio samples from 7 public personalities played
through speakers and then captured by a mmWave
radar. We use audio samples of more than 25000 words
in training and testing, and our thorough evaluations
show that MILLIEAR can accurately reconstruct the
original audio with the average MCD (Mel-Cepstral
Distortion) of 3.68 and the average likert user score
of 6.83. In addition, we evaluate MILLIEAR in different
scenarios with varying distances and angles between
speaker and radar, different types of soundproofing
material/wall between the speaker and radar, and dif-
ferent types of speakers. The valuation results clearly
show the premium performance of MILLIEAR.

The paper is organized as follows. Section 2 provides
the related work. Section 3 discusses mmWave radar and
GAN preliminaries with a feasibility study, and Section 4
describes the system overview. Our vibration extraction
methods and cGAN architectures are presented in Section
5 and Section 6, respectively. We implement MILLIEAR in
Section 7 and evaluate MILLIEAR in Section 8. Last, we
discuss MILLIEAR in Section 9 and conclude this paper in
Section 10.

2 RELATED WORK

In this section, we review and categorize related works
focusing on audio eavesdropping. Table 1 summarizes these
works and compares them with MILLIEAR.

Several studies have shown that an attacker can deploy
an IMU sensor near the audio source to perform eaves-
dropping. They show that IMU-based audio sensing can
classify words, small phrases, and the speaker gender [1]–
[4]. [10] touches on the audio recovery with unconstrained
vocabulary. Other similar forms of audio eavesdropping
have also been proposed. For example, [12] implements
a malware prototype which can turn the speaker into a
microphone for the eavesdropping purpose; [11] recovers
the audio using a vibration motor; and [13] uses a magnetic
hard disk to recover songs and voices by measuring the
offset between the read/write head and the track center
of the disk. The main disadvantage of these eavesdropping
methods is that they require to have physical access to the
equipment/sensor in a close proximity of the victim, which
reduces their applicability in practice. Also, given that some
of the attacks require installing spyware on victim’s device
(referred as invasive approaches in Table 1), these attacks
can be prohibited even if the victim only adopts simple
defense strategies.

Wireless signals have also been used to eavesdrop au-
dios. Two studies [8], [9] used WiFi signals to profile
movements or vibrations and identify audio. Authors in
[8] proposed a method to analyze the WiFi channel state
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Sensor Capability
Unconstrained

vocabulary
Non-
invasive

Through-wall
(opaque)

IMU
Gyroscope [1] ✗ ✗ ✗
Accelerometer [2]–[4] ✗ ✗ ✗
AccEar [14] ✓ ✗ ✗
IMU fusion [10] ✗ ✗ ✗

Misc.
Vibration motor [11] ✓ ✗ ✗
Speakers [12] ✓ ✗ ✗
Magnetic hard drive [13] ✓ ✗ N/A

Optical
receiver

High speed camera [5] ✓ ✓ ✗
Laser transceiver [6] ✓ ✓ ✗
Photodiode [7] ✓ ✓ ✗

Radio
receiver

WiFi-CSI [8] ✗ ✓ ✓
WiFi-MIMO [9] ✗ ✓ ✓
RFID tag [15] ✓ ✗ ✓
UWB [16] N/A ✓ N/A
WaveEar [17] ✓ ✓ N/A
mmSpy [18] ✗ ✓ N/A
MILLIEAR ✓ ✓ ✓

TABLE 1: Eavesdropping approaches in literature and their
comparison with MILLIEAR.

information (CSI) for classifying words. Similarly, in [9],
authors analyzed the received signal strength (RSS) of the
WiFi signals where the audio vibrations are considered as
low-rate modulations of RF signals. Akin to WiFi works,
RFID [15] and Doppler radar [19] have been leveraged for
eavesdropping. In particular, [15] requires a pre-installed
tag in the victim’s room. Compared to our approach, these
works relying on low resolution traffic data due to lower
frequencies and packet rates. Also, they require a multi-
antenna setup to localize victims and thus result in larger
physical footprint compared to mmWave, making the attack
more difficult to be carried out in practice. [16] presents
an Impulse Radio Ultra-Wideband based system that is
able to simultaneously recover and separate sounds from
multiple sources. Using the same RF technology, [20] can
recover audio below 400 Hz. However, their capability for
recovering unconstrained vocabulary has not been studied.
Besides, these works do not explicitly target complete audio
reconstruction with unconstrained vocabulary.

Cameras and lasers have also been used for acoustic
eavesdropping. Authors in [6] used a laser beam pointing
to the sound source or an object near the sound source,
to receive the reflected signal and convert it to audio
signal. Similarly, [5] used a high-speed video camera to
obtain the video of an object in the victim’s room (such
as a plastic bag, water, etc.) and analyze the response as
sound waves impinge on the object to recognize audio. [7]
proposed to use a remote electro-optical sensor to analyze
the fluctuations to sound of the victim’s light bulb. The
main disadvantage of these methods is that, apart from the
limited vocabulary, these attacks are difficult to carry out as
they require expensive, special purpose hardware such as
the high-speed cameras.

In other similar research, [21] and [22] use mmWave
radar to recover audio below 1 kHz, but the performance
of the human audio reconstruction has not been evalu-
ated. mmSpy [18] can eavesdrop on phone calls by using
mmWave and machine learning. However, mmSpy studies
eavesdropping on constrained vocabulary (hot words and
numbers). Authors in [17] used mmWave to acquire high-
quality voice from user’s vocal vibrations from near-throat
region. [23] proposed a speech eavesdropping approach
by leveraging the piezoelectric films and mmWave signals.
[24] proposed a remote and through-wall screen attack that
used mmWave to remotely collect information from LCD
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Fig. 1: Structure of an FMCW radar.
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Fig. 2: The waveform definition of FMCW radar signal.

screens. [25] showed how mmWave radar can be used
for micrometer-level vibration measurement in industrial
environments. [26] presents a noise-resistant multi-modal
speech recognition system by fusing mmWave radar and
microphone. While similar, these works do not focus on
acoustic eavesdropping and audio reconstruction.

3 PRELIMINARIES

In this section, we introduce the Frequency Modulated Con-
tinuous Wave (FMCW) radar based vibration measurement
and the Generative Adversarial Networks (GAN) based
signal enhancement.

3.1 Vibration Estimation

An FMCW radar transmits a signal called “chirp”. A chirp
is a sinusoid whose frequency increases linearly with time.
FMCW radars can be used to accurately estimate the ob-
ject distance and its relative velocity by comparing the
transmitted and received signals. Figure 1 illustrates the
structure of an FMCW radar, which includes a transmitter
antenna and a receiver antenna. The distance d to the object
(speaker) can be estimated by calculating the difference
between the transmitted and the received signals. With the
accurate estimation of distance changes from a mmWave
radar, MILLIEAR can infer the vibrations of the speaker and
reconstruct the audio.

Figure 2 illustrates the waveform of the FMCW radar
signal, where A is the amplitude of signal, f0 is the start
frequency, B is bandwidth of radar, k is the slope of the
frequency increase, Tc is the signal duration, Tx and Rx

is the transmitted and received signal, respectively. Let
STx(t) and SRx(t) be the FMCW transmitted and received
(reflected by target) signal represented as

STx(t) = ATx · cos[2π · fTx(t) · t+ ϕTx] (1)
SRx(t) = ARx · cos[2π · fRx(t) · t+ ϕRx] (2)

where fTx(t), ϕTx, and ATx are the frequency, the phase,
and the amplitude of the transmitted signal, respectively.
Correspondingly, fRx(t), ϕRx, and ARx are receiver’s signal
features. We denote the round-trip delay between the trans-
mitted and received signals as τ , so fRx(t) = fTx(t − τ) is
the τ -delayed version of fTx(t). After applying a mixer on
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the transmitted and received signal, we can obtain the beat
frequency signal as follows

Sb(t) =STx(t)SRx(t)

=
1

2
ATxARx · {cos[2π · fb(t) · t+ ϕb]+

cos[4π · fTx(t) · t− 2π · fb · t+ ϕb]}

where fb(t) = fTx(t) − fRx(t) is the frequency change
function of beat signal and ϕb = ϕTx − ϕRx. Since the beat
frequency (at MHz level) is much lower than the carrier
frequency (at GHz level) [27], we can apply a low-pass filter
to exclude the carrier. Then the beat frequency signal can be
expressed as follows

Sb(t) = Ab · cos[2πkτt± 2πf0τ − 2πkτ2 ∓ ϕb] (3)

where Ab = 1
2ATxARx is the synthesized amplitude of the

transmitter and the receiver. In fact, due to the presence
of reflected signals from objects at different distances in
the original data, the frequency components in Sb(t) are
different. As shown in Figure 3, we perform Range-FFT on
fast-time samples in a chirp. It maps the time domain signal
to the frequency domain. Objects at different distances have
a peak in the frequency domain. Then, we perform Doppler-
FFT on the results of Range-FFT for our vibration source
positioning task.

From Eq. 3, we can derive the phase of the intermediate
frequency signal as follows,

ϕ = 2πf0τ − 2πkτ2 + ϕb (4)

Since τ involves the speed of light c, the accuracy of its
calculation will be rough. Therefore, we combine τ = 2d/c
and Eq. 4 to eliminate τ ,

ϕ = 2πf0 ·
2d

c
− 2πk · 4d

2

c2
+ ϕb (5)

Simplifying Eq. 5, we can obtain:

8πkd2 − 4πf0cd+ (ϕ− ϕb)c
2 = 0 (6)

from Eq. 6, we can derive an accurate distance measurement
as:
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Fig. 4: The spectrograms for (a) original audio and (b)

reflected mmWave signal from the speaker.

d =

f0
k

+

√
f2
0

k2
− 2 · ϕ− ϕb

πk

 · c
4

(5)

We perform the linear parabolic interpolation in the
phase spectrum from Range-FFT to obtain a wrapping
phase. Combined with the phase calculated in Eq. 4, we
can achieve an accurate phase estimation, which can be
used in Eq. 5. Therefore, we can calculate the distance from
the FMCW radar to the speaker by chirps. The vibration
estimation can be obtained from the difference between
successive distance measurements.

3.2 A Feasibility Study
In order to launch an eavesdropping attack, we verify the
correlation between the received mmWave signal and the
audio played through a speaker using a proof-of-concept
experiment. In the experiment, we let the speaker play an
test audio (as shown in Fig. 4(a)) while the mmWave radar
is placed in front of the speaker at a 1m distance without any
blockage. The frequency of the test audio is from 200Hz to
5kHz to measure the frequency response. Fig. 4 shows the
played audio spectrogram and the corresponding mmWave
spectrogram captured by the FMCW radar. We observe that
the mmWave signal shows a high similarity with the audio
signal. Due to the low sampling rate of the FMCW radar,
the radar signals show poor similarity with the audio at
high frequencies. Also, The FMCW radar suffer from white
noise over the whole spectrum. To address these two issues,
we enhance the mmWave radar signals reflected from the
speaker using a generative machine learning model.

3.3 Generative Adversarial Networks
Generative adversarial networks (GANs) belong to the class
of generative models [28]. The goal for GANs is to learn a
function that can map between two distributions: the source
and the target. The source is a random noise distribution
(pz(z)) and the target is the underlying distribution of the
data (pdata). Once this mapping is learned, GANs can take
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Fig. 5: Our attack scenario of mmWave-based audio
eavesdropping.

a sample z ∈ pz and map it to sample x ∈ pdata. GANs
implicitly learn this mapping function and have enabled a
plentiful of novel applications [29]–[33]. GAN models are
trained by emulating a min-max game between the two
networks, one is the generator (G) and the other is the
discriminator (D). The generator’s objective is to fool the
discriminator by generating samples from the noise distri-
bution pz(z) which are similar to those sampled from pdata.
The discriminator’s job is to correctly label the data from
the generator as fake and the data from pdata as real. The
objective function V (G,D) for this min-max game between
the two networks can be written as

V (G,D) = Ex∼pdata(x)[log D(x)]+

Ez∼pz(z)[log (1−D(G(z)))]

where the objective of the generator is to minimize log (1−
D(G(z))) and the objective of the discriminator is to mini-
mize log D(x). An equilibrium is reached when the genera-
tor has successfully approximated pdata and the discrimina-
tor can no longer differentiate between real and fake data.

3.4 Attack Model
Previous approaches to preventing acoustic eavesdropping
rely on the use of isolators, such as soundprooof glass,
polyethylene foam, and plywood. In this work, we consider
the eavesdropping threat which leverages the mmWave
radar to reconstruct the sound of the speaker even with
the existence of sound-proof isolators. As illustrated in Fig
5, a practical eavesdropping attack is expected to work in
the following conditions: (i) there is an acoustic isolation
between the attacker and the victim, i.e., the victim’s sound
cannot penetrate the sound-proof isolator; the attacker can-
not deploy any equipment/sensor in the same room as
the victim; (ii) the attacker has no prior information about
the type of audio information emitting from the victim
speaker. The attacker is required to not only able to classify
a handful of audio signals (i.e., words or numbers), but to
recreate any audio from the entire vocabulary including full
sentences. (iii) the device to launch an attack is portable
and affordable. The attack model considered in this work
is more practical and challenging than existing works. In
our work, the attacker can perform sound eavesdropping
in this scenario with a low-cost commercial mmWave radar
outside the soundproof space.

4 SYSTEM OVERVIEW

Fig. 6 illustrates our mmWave voice eavesdropping system.
MILLIEAR has a mmWave radar which can capture the

minute vibration cause by the sound. First, the mmWave
radar emits an FMCW chirp signal to the vibrating speaker.
Then, the signal arrived at the speaker is reflected back to
the radar. Last, through careful processing and enhancement
of the received signal, MILLIEAR extracts the speaker vibra-
tions. However, due to the background reflection and the
multipath effect [34], [35], there are errors in the received
signal, resulting in inaccurate estimation of vibrations. To
solve this problem, MILLIEAR feeds the vibration data into
our Generative Adversarial Network for enhancement and
denoising, which achieves high-quality audio reconstruc-
tion. MILLIEAR is mainly composed of two modules:

(1) Spectrogram Generation (SG): SG consists of two
phases, namely, target (speaker) localization and spectro-
gram extraction. In order to locate the position of the
speaker, MILLIEAR takes several steps. First, it receives the
raw data from the mmWave radar as an input. Second,
it performs Range-FFT on the raw data to measure the
distance to the target. Third, it conducts Doppler-FFT on
the result of Range-FFT to find candidate range bins and
identify the one that contains the desired vibration. In
order to improve the resolution of the FFT, each chirp of a
frame was split into multiple sub-chirps to provide multiple
observation while extracting the displacement of vocal vi-
brations. Last, MILLIEAR performs Short-time Fourier Trans-
form (STFT) to each chirp to obtain the time-frequency do-
main spectrogram. STFT is essentially a windowed Fourier
Transform. The formula for STFT and the other details of SG
will describe in Section 5.

(2) Audio Reconstruction (AR): The AR module uses
a conditional GAN that is trained using two sources of
spectrogram images - one from the mmWave radar and
the other from original audio. Using the training data, the
GAN learns how to enhance the mmWave spectrogram by
enhancing representative frequency and amplitude com-
ponents and reducing noise. The trained GAN model is
then used to reconstruct audio directly from the captured
mmWave spectrograms. Please note that the GAN training
is agnostic to the spoken text and thus does not require any
manual annotation during the training. We elaborate on AR
in Section 6.

5 SPECTROGRAM GENERATION

This section explains the spectrogram generation module
that consists of the vibration detection component and the
vibration extraction component.

5.1 Vibration Detection
To facilitate signal processing, we collect raw binary ADC
data via a mmWave radar and convert it into a multidi-
mensional IQ array. To avoid spectral leakage, we segment
the acquired IF signal through a windowing process. In
this process, we choose the Hanning window. Then, we
perform a fast Fourier transform (FFT) to output the Range-
FFT spectrum and the phase spectrum, which contain a
single chirped frequency bin. The results of the Range-FFT
can be used to distinguish multiple objects based on their
intermediate frequencies. We identify peaks on the Range-
FFT spectrum by applying a continuous wavelet transform
(CWT) based peak detection algorithm [36].
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Fig. 7: Vibration extraction from FMCW chirps.

Each frequency peak corresponds to an object within
the radar range. However, Range-FFT can only give us
the distance of the target. To locate reverberating objects,
we performed a Doppler-FFT test based on the results of
the Range-FFT. Similar to the Range-FFT spectrum, we can
identify objects within the radar vision.

In the Doppler-FFT spectrum, a vibrating object has a
significant velocity magnitude on the velocity axis. For an
object in a certain range bin, the higher magnitude on the
velocity axis, the higher the probability of the vibrating
object. Therefore, we select objects with high velocity and
set the processing priority in descending order of velocity
values. In this way, we can achieve vibrating object local-
ization. Regarding the selection of vibrating objects, a high-
pass threshold is set as a buffer in order to avoid the effects
of weak object vibrations and other errors.

5.2 Vibration extraction

In order to restore the audio, the vibration displacement
must be accurately extracted. We adopt the similar method
in [25] for the vibration extraction.

The mmWave radar emits chirps at a fixed time interval
and groups a bunch of chirps as one frame for Range-
Doppler processing. Range-FFT typically takes all fast-time
samples of one chirp as input and generates one slow-time
sample. However, low-cost commercial mmWave radars
cannot guarantee accurate phase extraction under low SNR
based on a single chirp. To improve the phase extraction,
we apply a sliding window on fast-time samples within one
single chirp to generate more virtual sub-chirps as shown in

Fig. 7. These sub-chirps are used for cross-referencing with
each other. We then conduct Range-FFT on each sub-chirp
to obtain multiple slow-time samples. Since the duration of
slow-time samples (one frame) are much longer than fast-
time samples (one chirp), the time variance of a group of
sub-chirps within one chirp can be ignored, i.e., we can
consider these sub-chirps being transmitted simultaneously.
As shown in Fig. 7, the position of the voice bin detected
by sub-chirp 2 (red bin) is different from that of other sub-
chirps (green bins). Since we have multiple observations for
cross-validation, the abnormal bin (red) can be identified
and eliminated. By this approach, we can accurately recog-
nize the correct voice bin.

With the accurate extraction of the voice bin, we perform
Doppler-FFT on the slow-time samples to derive the phase.
The vibration displacement is calculated according to Eq. 5
once the phase is available. Since the displacement at a
specific time is the direct result of the amplitude of audio,
we consolidate all the vibration displacements with a times-
tamp into a waveform as shown in Fig. 4. The maximum
chirp rate of the mmWave sensor used in our work is 10kHz
which is much smaller than the sampling rate of common
audio 44.1kHz. In order to recover audio from the under-
sampled vibration waveform, we resort to GAN to enhance
the vibration information with more details.

5.3 Mel-spectrogram generation
Our vibration waveform is a one-dimensional signal. How-
ever, the conditional generative adversary network (cGAN)
in audio reconstruction requires image-like input with corre-
lations among surrounding pixels. Hence, we first transform
the waveform to mel-spectrograms. A mel-spectrogram [37]
is a popular representation for audio signal which has
been widely used in the speech synthesis, audio denoising,
etc. We feed this image-like spectrogram into cGAN for
enhancement. The enhanced spectogram is then converted
back to audio, which leads to a little information loss.

In this work, we choose Short-time Fourier Transform
(STFT) to get the time-frequency spectrogram. STFT can be
calculated as follows,

STFT (t, f) =

∫ +∞

−∞
x(τ)h(τ − t)e−j2πfτdτ (6)

where h(τ − t) is the window function, τ is the half window
size of time t, and x is the waveform. Since the magnitude
of the generated spectrogram is relatively large, in order to
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Fig. 8: MILLIEAR cGAN architecture.

obtain a sound feature of a suitable size, it is usually passed
through a mel-scale filter bank to produce a mel spectrum.
Studies have shown that humans do not perceive frequen-
cies linearly [38]. Instead, humans are better at detecting
differences in low frequencies than in high frequencies. For
example, we can easily distinguish the difference between
500 Hz and 1000 Hz, but it is difficult for us to distinguish
the difference between 10,000 Hz and 10,500 Hz. In order to
capture this feature, we convert the spectrogram produced
by STFT to mel-spectrogram [37]. The conversion process
to calculate the mel-frequency mel(f) follows the equation
mel(f) = 2595∗log10(1+

f
700 ), where f is the frequency. The

transformation is performed on both the vibration signal as
well as the corresponding audio waveform for the cGAN
training and only on the vibration signal during the testing.

6 AUDIO RECONSTRUCTION

This section describes our audio reconstruction module. It
covers the GAN architecture and the reconstruction applied
in MILLIEAR.

6.1 GAN Architecture
We adopt an image to image translation approach [39] for
enhancing the mmWave vibration mel-spectrograms. We
use the conditional version of GAN referred as cGAN.
Unlike GANs which generate data from a random noise
vector (as described in Sec. 3.3), cGANs additionally take
a conditional variable, enabling control on the generated
data [40]. The objectives of the generator and the discrim-
inator are modified to include the conditional input y.
The modified objective functions for the generator and the
discriminator are log(1 − D(y,G(z, y))) and log(D(y, x))
respectively. Fig. 8 shows our cGAN architecture. While
training, the generator takes a mmWave vibration mel-
spectrogram as a conditional input and enhances it. The
enhanced mel-spectrogram is concatenated with mmWave
mel-spectrogram and input to the discriminator. The dis-
criminator is expected to classify this as fake. Additionally,
when input with the mel-spectrogram from real audios
concatenated with mmWave mel-spectrogram, the discrim-
inator classifies it as real. Inputting the mmWave mel-
spectrogram conditions the discriminator and forces the
generator to generate the output corresponding to the in-
put mmWave mel-spectrogram instead of any real looking
mel-spectrogram. As the training progresses, the generator
learns to enhance the input such that it becomes difficult
for the discriminator to discriminate between the generator

mmWave

radar

speaker

Fig. 9: Two examples of experiment setup of MILLIEAR.
Left: Conference Room with a dense wood door;

Right: Conference room with a double-panel glass wall.

enhanced mel-spectrogram and the real mel-spectrograms
obtained from real audio. During the testing, the generator
is used to enhance the mmWave vibration mel-spectrogram,
without the presence of a discriminator. It can be ob-
served that the discriminator essentially helps the generator
learn by indicating the errors in the generated data. After
training with cGAN, the difference between the enhanced
spectrum and the original spectrum is further minimized.
In other words, the high-frequency part of the audio is
complemented and the low-frequency part of the audio is
enhanced.

For the generator network, we utilize the UNET [41]
architecture with skip connections. UNET is an encoder-
decoder based architecture proposed for biomedical image
segmentation. Each convolutional block in the generator
and discriminator is comprised of convolutional layers with
square kernels of size 4 × 4 and stride value 2, followed
by batch normalization and rectified linear units (ReLU)
for non-linearity [42]. Batch normalization normalizes the
activation of different units and accelerates the network con-
verge [43]. A dropout value of 0.5 is used in the intermediate
layers and the number of filters is set as multiples of 64 with
the filter size decreasing linearly in the subsequent layers
following the suggestions in [41]. For the discriminator,
we use three convolutional blocks, followed by patch wise
predictions of real or fake, with a patch size of 30 × 30.
In contrast to having pixel wise or per image prediction,
patch wise predictions take advantage of the independence
in patches that are further apart. Additionally, as the cap-
tured mmWave data does not include the high-frequency
components of the audio, the network’s prediction on those
patches can be independently improved. The generator and
discriminator networks are trained alternatively following
the approach delineated in [44]. We use the binary cross-
entropy loss [45] between the predicted and ground truth
patch labels along with L1 norm [46] over the generator
network as the loss function. L1 norm provides regulariza-
tion without blurry artifacts of the L2 norm. We empirically
observe that a learning rate of 0.0002 generates faster con-
vergence. We use the Adam [47] optimizer for optimizing
the network. The network is trained for 200 epochs and the
performance on a validation set is used to select the optimal
training epoch.

6.2 Reconstruction from Enhanced Spectrograms

Once the cGAN enhances the mmWave mel-spectrogram
with richer acoustic features, we use a vocoder to convert

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3226690

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 14:22:25 UTC from IEEE Xplore.  Restrictions apply. 



8

Label Person # of words
for testing

# of words
for training

# of words
overlapping

User1 Barack Obama 1703 6812 51
User2 Taylor Swift 1605 6421 48
User3 Bill Gates 1594 6377 47
User4 Anne Hathaway 1509 6037 45
User5 Amitabh Bachchan 1143

25647∗
34

User6 Meryl Streep 1084 32
User7 Hugh Jackman 1072 30

TABLE 2: Audio dataset used for evaluating MILLIEAR.

the mel-spectrogram to the audio. Specifically, we use the
Griffin-Lim algorithm [48] to synthesize waveform from the
generated spectrogram due to its efficiency and simplic-
ity. Griffin-Lim uses the phase constraint between frames
to achieve iterative convergence and can reconstruct the
speech signal using the frequency spectrogram on the basis
of the lack of original phase information. It is proposed
to finding an approximate phase without destroying the
adjacent amplitude spectrum and its own amplitude spec-
trum. Given that there is a large difference between the
worst case and the best case phase, a more accurate phase
is obtained through iteration. By this way, even without
the original phase information, we can restore the audio
waveform to a large extent using the Griffin-Lim algorithm.
The reconstructed audio is expected to be as similar to the
original human audio as possible.

7 IMPLEMENTATION

This section provides the implementation setup of MIL-
LIEAR and the dataset used for the training and testing.

7.1 Experiment Setup
We implement MILLIEAR on TI IWR1642 BoosterPack which
includes an evaluation board (IWR1642BOOST) and a real-
time data-capture adapter (DCA1000EVM) [49]. IWR1642
has 2 transmitter (Tx) and 4 receivers (Rx) antennas with
the working frequency range of 76-81 GHz. We use one Tx
antenna to transmit the FMCW signal and all four Rx anten-
nas to receive the reflected signal. The DCA1000EVM board
is used to collect raw ADC data (fast-time samples). The
pre-processing of the raw data was conducted on a laptop
with an AMD Ryzen 7 4800H CPU and 16GB memory.

The sampling rate of all the audio samples used in our
experiments is 44.1 KHz. We use a typical conference room
setting with speaker volume set to 70dB and background
noise of approximately 45dB (typical indoor office back-
ground noise [50]). Fig. 9 shows two typical conference
room scenarios used in our experiments. MILLIEAR was
evaluated under various settings to capture the influence of
sensing distance and angle, materials of isolators, etc. For
each setting, we collect at least 4500 audio samples and
their corresponding raw mmWave data. The training was
performed offline on a server with 10 GPUs (Nvidia RTX
3090). Training for a single user for 200 epochs takes about
2.5 hours and average testing time is 20s.

7.2 Dataset
Our dataset contains audios from 7 English-speaking public
personalities as shown in Table 2. We refer to them as User1
through User7. For each user, we randomly select speech

samples available online from websites such as YouTube.
Table 2 also shows the length of speech audios used in
number of words for training and testing for each user .
Since our objective is to demonstrate the capability of our
model to reconstruct unconstrained vocabulary, we organize
the dataset such that there is only a small overlap (shown in
Table 2) between words in speech used for training versus
testing. The audio samples are played on a speaker in the
conference room settings discussed before. The audio and
mmWave data are split into 2 seconds segments for input
to cGAN model. The total amount of mmWave data is
1.2TB. For User1 through User4, the cGAN model is trained
using their own data (training and testing for the same
user). For User5 through User7, the model is trained using
the audio samples of User1 through User4 and tested on
User5 through User7. This setting enables us to validate the
performance of model in terms of how it generalizes across
different users with cross-subject training.

8 EVALUATION

In this section, we analyze the results of our experiments in
two parts: (i) the overall audio reconstruction performance
of MILLIEAR and (ii) robustness of MILLIEAR in various
scenarios and settings. We perform both subjective and
objective evaluation of MILLIEAR, in terms of the following
metrics:

• Mel-Cepstral Distortion. Mel-Cepstral Distortion
(MCD) [51] is an objective measure used for speech
quality assessment. It has been widely used in com-
paring the quality of synthesized speech to the original
speech. A smaller MCD score indicates a closer simi-
larity between the reconstructed audio and the original
audio. It is believed that a reconstructed audio with
MCD below 8 can be recognized by a typical speech
recognition system [52].

• Likert Score. For subjective evaluation of the recon-
structed audio, we recruit 20 volunteers to listen to the
recovered audio. These participants include both native
and non-native English speakers with ages from 20 to
30 years old. We ask them to listen to the reconstructed
audio and the original audio one after the other and
then rate the quality of restored audio on a likert
scale of 0 to 10. A higher likert score indicates better
quality of reconstructed audio. Score of 0 indicates the
reconstructed audio is unintelligible while 10 means
there is no difference between the reconstructed and
original audios.

8.1 Overall audio reconstruction performance

We first evaluate MILLIEAR’s ability to reconstruct audio
signals in the conference room setting as shown in Fig. 9
(right). The mmWave sensor and the speaker are isolated
by a double-panel glass wall with a distance of 1.5m.
Fig. 10 illustrates the three types of spectrograms for User1:
original audio, directly generated from the mmWave radar
without any enhancement, and audio reconstructed from
the mmWave radar enhanced by our cGAN model. We
observe that the original audio and reconstructed audio
spectrograms show high similarity. This is because our
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Fig. 10: User1 speech spectrograms for (a) original audio, (b) directly generated from mmWave data without enhancement
and (c) audio reconstructed from mmWave data using our cGAN.
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Fig. 12: Subjective assessment by volunteers for the
recovered audio.

cGAN model is able to learn how to enhance the mmWave
spectrograms by reducing noise in the mmWave data and
adding specific acoustic components at different frequencies
and their amplitude. Given that the overlap (in terms of
words) in our training and testing data is small (Table 2),
the accurate reconstruction clearly demonstrate our cGAN’s
ability to work with unconstrained vocabulary. Even in
the example shown in Fig. 10 that only 10 words (mostly
frequency used words such as the, to, and of ) are part of the
training speech, MILLIEAR still performs very well.

Fig. 11 shows the MCD for Users 1 through 4. The cGAN
model is trained and tested separately for each user. We
observe that the average MCD is less than 4 for all users.
This implies that the reconstructed audio is not only human
discernible but also shows high similarities with the original
speech. We further evaluate this similarity using subjective
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Fig. 13: Vibration extraction performance (relative
amplitude error between mmWave vibration waveform

and original audio) at different distances and angles.
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Fig. 14: Audio reconstruction performance at different (a)
distances and (b) angles.

evaluation. Fig. 12 shows the median Likert score from the
20 volunteers for the audio samples of 4 users (both original
and reconstructed). As shown in Fig 12, the median score
of each user on both two audio sample snippets is higher
than 6 which indicates that MILLIEAR has the ability to
reconstruct voice that is clearly human recognizable.

8.2 Impact of distance and direction

In real-world scenarios, an attacker may need to adjust the
position of the mmWave sensor in order to carry out the
eavesdropping. However, adjusting the position will change
the distance and direction between the victim device and
the mmWave radar. Therefore, we evaluate the robustness
of MILLIEAR for different distances and directions. We vary
the distance between the mmWave sensor and the speaker
from 1m to 5m, and vary the angle from 0◦ to 45◦ in our
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Fig. 16: Audio reconstruction performance with different
types of speakers.

experiments. These settings are evaluated for the 4 users’
audio with individually trained models.

Fig. 13 shows the performance of our proposed vibration
extraction. We use the relative error er to evaluate the
accuracy of vibration extracted from the mmWave signals
(without enhancement). Since the amplitudes are at different
scales, we normalize them before calculating the relative
error of different distance and angles. The relative error to
the original audio is derived based on er = |Av−Ao|

Ao
, where

Av and Ao are the normalized amplitude of the vibration
waveform and the original audio signal, respectively. We
can see that MILLIEAR achieves 8.9% distance average rel-
ative error and 9.6% angle average relative error. The com-
parison shows the relative error of MILLIEAR between 1m
and 5m is 10.2%, and the relative error between 0◦ and 45◦

is 8.8%. The results clearly shows that MILLIEAR’s vibration
extraction achieves a good accuracy in our experiments.

Fig. 14(a) shows the MCD for four users (User1 to User4)
with varying test distances from 1m to 5m. We observe in-
creased MCD scores, indicating gradual reduction in recon-
struction quality. However, the overall degradation is not
significant at least within the range of the radar. Fig. 20(b)
shows that angle has a greater impact on the quality of
the reconstructed audio compared to the distance. This is
probable because the vibration detection of the speaker sur-
face (i.e., the reciprocating motion) is increasingly difficult
to capture through the radar when they are at a larger an-
gle from each other. Nonetheless, MILLIEAR can accurately
reconstruct the audio within 45◦. The above experiments
show that MILLIEAR can carry out the eavesdropping even
at different distances and directions.

8.3 Impact of different types of insulation materials and
speakers
The soundproof isolators have been widely used to prevent
eavesdropping in practical scenarios. Hence, we conduct
experiments to test the robustness of MILLIEAR against
different types of insulation materials. We choose 5 types
of popular soundproof panels that are composed of dense
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Fig. 17: MCD of User 1 through 4 at different background
noise.
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Fig. 18: The effect of different sound intensities on MCD of
User 1 through 4.

wood, polyester, cotton, glass and soundproof plaster, re-
spectively. As shown in Figure 15, except for glass, the
performance of MILLIEAR does not change significantly
with the observed MCD being within 4. Since glass is the
strongest reflector of mmWave signals among the materi-
als studied (based on permittivity and attenuation values
found in [53], [54]), the sound reconstruction is deteriorated
by a small margin. In general, we observe that MILLIEAR
achieves a decent performance through penetrating most
insulating and soundproofing materials, and thus MILLIEAR
can carry out the eavesdropping in common indoor spaces
such as homes and offices.

Given that speakers from different manufacturers have
distinct features (shapes, material, etc.), we evaluate MIL-
LIEAR with four different types of speakers. They are Philips
SPA33, Philips SPA311, Edifier R12U, and Tmall IN. Note
that there is no cover on the diaphragm of Philips SPA311
and Edifier R12U, while the diaphragm is covered in Philips
SPA33 and Tmall IN speakers. Fig. 16 shows that can achieve
better eavesdropping performance on Philips SPA311 and
Edifier R12U than Philips SPA33 and Tmall IN, because the
vibrating surfaces of the former two speakers are directly
exposed to the mmWave sensor.

8.4 Impact of different types of background noise

In the real world, the sound source is usually surrounded
by a variety of background noise. Consequently, to make
the experiments more practical, we study the impact of
background noise on MILLIEAR as follows. We select five
different background noises, which are pure music, human
voice, white noise, traffic noise1, and water sounds2. Specif-

1. City Traffic Sounds, https://www.youtube.com/watch?v=
fh3EdeGNKus

2. Water Sounds, https://www.youtube.com/watch?v=jkLRith2wcc
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ically, we choose “Summer3” for pure music and “I Have a
Dream4” by Martin Luther King Jr. for the human voice, and
we create a white noise with an amplitude of 0.1. We use an-
other speaker (volume set to 50dB) to play background noise
at 5m from the radar. Figure 17 shows the MCD of User 1
through 4 under five types of background noises. It can be
easily observed that the MCD of each User does not change
significantly under different noises. The reason for this is
that MILLIEAR reconstructs audio by extracting vibrations
of the audio source. The speaker actively modulates the
vibration, and thus the sound waves from the background
noise have a weak effect on the diaphragm of the speaker.
Therefore, the performance of MILLIEAR does not change
significantly in the presence of background noise.

8.5 Impact of different sound intensities
In a real eavesdropping scenario, the sound intensity of
the target is usually not constant. Therefore, in order to
provide a more comprehensive experimental evaluation, we
investigate the effect of the sound intensity of the speaker on
the audio reconstruction. We place the speaker at 1m from
the radar. We set the intensity from 60dB to 80dB and let the
speaker play audio from User 1 through 4. We evaluate the
4 users’ audio with individually trained models. Figure 18
shows that, as the sound intensity increases, the MCD
decreases, which means that the spectral similarity becomes
higher. This is because the sound intensity of the speaker is
determined by the modulation of the amplitude, and the re-
duction of the sound intensity indicates the reduction of the
vibration amplitude. Nevertheless, within the typical range
of sound intensities, MILLIEAR can accurately recover the
audios, indicating the effectiveness of the eavesdropping.

8.6 Multiple audio sources reconstruction
Conventional eavesdropping methods only attack one audio
source in default. For instance, a microphone can record
the overlapped audio from different sources, but it is dif-
ficult to separate them. In this experiment, we study the
ability of MILLIEAR for multi-source audio reconstruction.
We put two speakers in the mmWave sensor’s field of view.
Speaker1 and Speaker2 (both are Philips SPA33) are placed
at 1m and 1.5m from the sensor respectively. Speaker1 plays
audio1 and Speaker2 plays audio2. To prevent overlap of
sound sources, the distance between each source is larger
than the distance resolution5 of the radar. In addition, we
put a microphone next to the radar as a comparison.

As shown in Figure 19(b), multiple audio sources are
super-imposed in the microphone spectrogram. This is be-
cause they are entangled in both the time and frequency
domains, which makes it difficult to separate the audio
sources. In contrast, by selecting different range bins, the
mmWave signals from each audio source can be processed
independently. As shown in Figure 19(c) and Figure 19(d),

3. Joe Hisaishi - Summer, https://www.youtube.com/watch?v=
l0GN40EL1VU

4. I Have a Dream, https://www.youtube.com/watch?v=
vP4iY1TtS3s

5. According to theoretical calculation, we know that the spatial
resolution of radar is roughly 5cm, which means that two objects less
than 5cm apart will be overlapped into one object.
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Fig. 19: Multiple audio source evaluation: (a) Experimental
setup (b) Spectrogram of the audio recorded by

microphone (c-d) Spectrograms of reconstructed audio
from Speaker1 and Speaker2.

MILLIEAR can effectively separate multiple audio sources.
Our experiment results show that MILLIEAR can reconstruct
sounds from multiple audio sources.

8.7 Model generalization with cross-user training
To show that MILLIEAR has a good model generalization
capability, we train and test the cGAN model for different
users (cross-user training and testing). We train the model
using User1 data and then test it with Users 2, 3 and 4.
Fig. 20(a) shows the MCD reduction when Users 2, 3 and
4’s speeches are tested with their own individually trained
model vs. the model trained using User1’s data. We find that
while there is clearly a reduction in audio reconstruction
performance, the overall performance is still good to carry
out the attack. The reconstruction quality degrades because
the voice characteristics of different people have different
dominant frequency components that are not always accu-
rately reconstructed during cross-user training.

To evaluate if adding more user’s data to the training can
further improve the cross-user performance, we train the
model with data from Users 1 through 4, and test it on Users
5 through 7. Fig. 20(b) shows the resultant MCD. We find
that when more users are used in the training, the model
generalizes better by learning to capture more diverse set
of acoustic features. For example, the MCDs of User5 with
model of User1 through User4 are all above 5.6, while model
trained using multiple users’ data generates a much lower
MCD of 3.8. These cross-user training results show that an
attacker can train the model offline with a large number
of users’ audio data and then carry out the eavesdropping
attack on an unknown user’s audio data.

9 DISCUSSION

MILLIEAR is a mmWave-based acoustic eavesdropping with
unconstrained vocabulary, which achieves premium perfor-
mance. This section discusses MILLIEAR in the following
aspects.
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Fig. 20: Model generalization: (a) test result based on own
model vs. other’s model; (b) cross-user test results.

Countermeasure to mmWave Eavesdropping. As we clearly
show in this paper, mmWave signals can accurately eaves-
drop sounds from speakers. There are several methods to
prevent or mitigate eavesdropping, all with drawbacks.
(1) A straightforward method it to wrap the room or the
speaker with electromagnetic shields to block all wireless
signals. However, considering the cost and inconvenience,
it is very unlikely that electromagnetic shields will be-
come widely available in daily lives. (2) Another method
is to disrupt the mmWave frequency bands by broadcast-
ing jamming mmWave signals, since eavesdropping with
sub-6 GHz does not work well. However, mmWave is
also used by high-speed short-distance data transmission
(e.g., TV connection and 5G/6G communications), and thus
jamming mmWave frequency bands interferes with legit
applications. (3) Adding jitters to the speakers to create man-
made vibration could mitigate the eavesdropping quality.
However, the original sound quality might deteriorate as
well. In addition, the attacker can simply apply filtering
techniques to remove jitters. (4) Jamming the signal of a
target radar using another radar. Nevertheless, an FMCW
radar receiver expects to receive signals with a predefined
frequency pattern and to filter signals from other frequency
bands. (5) Moving audio sources. The mmWave radar in this
paper has a chirp rate of 10k, i.e., the interval time between
adjacent chirps is only 0.1 ms. Therefore, manually moving
speakers do not create significant displacement within this
short chirp interval. Moreover, the application of cGAN also
eliminates the effect of such noise and thus our experimental
results are valid even when people deliberately move the
speakers as a countermeasure. As we can see, it is difficult
to prevent mmWave eavesdropping, which calls for more
research effort to design effective counter-measurements.

Performance Improvement. In our prototyping system, we
adopt UNET for the GAN generator and a simple convolu-
tional network for the GAN discriminator. It is expected that
applying other more advanced models can further improve
the accuracy of MILLIEAR. Since the focus of this paper it to
build the eavesdropping system with no constrained vocab-
ulary by using mmWave and GAN techniques, we leave it
as future work to obtain the best performance. Nonetheless,
the simple models used in this paper have already achieved
exciting overall performance, strongly supporting that the
workflow in MILLIEAR is general and effective.

Mobile Version of MILLIEAR. Since mmWave modules will
be integrated in next-generation smartphones for emerg-
ing applications, we plan to design a mobile version of
MILLIEAR. The corresponding eavesdropping attack from

phone is more difficult to discover, which raises severe
concerns about the privacy of human conversation over
speakers. Meanwhile, the mobile version will poses new
research challenges such as how to remove the interfering
vibration from the attacker’s phone in pockets.

10 CONCLUSION

In this work, we propose a mmWave eavesdropping system
that combines the mmWave FMCW and generative machine
learning networks to reconstruct the original audio. Our
evaluation results show that MILLIEAR is highly effective
in eavesdropping voices, achieving the average MCD of
3.68 and the average likert user score of 6.83. This paper
sheds light on a mmWave-based eavesdropping system and
could motivate more research along this direction, given the
inspiring results.
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