This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 1

Towards System-Level Security Analysis of loT
Using Attack Graphs

Zheng Fang, Hao Fu, Tianbo Gu, Pengfei Hu, Member, IEEE, Jinyue Song,
Trent Jaeger, Member, IEEE, and Prasant Mohapatra, Fellow, IEEE

Abstract—Most loT systems involve loT devices, communication protocols, remote cloud, loT applications, mobile apps, and the
physical environment. However, existing 10T security analyses only focus on a subset of all the essential components, such as device
firmware or communication protocols, and ignore loT systems’ interactive nature, resulting in limited attack detection capabilities. In this
work, we propose |0TA, a logic programming-based framework to perform system-level security analysis for loT systems. |0TA
generates attack graphs for IoT systems, showing all of the system resources that can be compromised and enumerating potential
attack traces. In building I0TA, we design novel techniques to scan loT systems for individual vulnerabilities and further create generic
exploit models for 10T vulnerabilities. We also identify and model physical dependencies between different devices as they are unique
to loT systems and are employed by adversaries to launch complicated attacks. In addition, we utilize NLP techniques to extract loT
app semantics based on app descriptions. |0TA automatically translates vulnerabilities, exploits, and device dependencies to Prolog
clauses and invokes MulVAL to construct attack graphs. To evaluate vulnerabilities’ system-wide impact, we propose three metrics
based on the attack graph, which provide guidance on hardening loT systems. Evaluation on 127 loT CVEs (Common Vulnerabilities
and Exposures) shows that 10TA’s exploit modeling module achieves over 80% accuracy in predicting vulnerabilities’ preconditions and
effects. We apply |OTA to 37 synthetic smart home loT systems based on real-world loT apps and devices. Experimental results show
that our framework is effective and highly efficient. Among 27 shortest attack traces revealed by the attack graphs, 62.8% are not
anticipated by the system administrator. It only takes 1.2 seconds to generate and analyze the attack graph for an loT system

consisting of 50 devices.

Index Terms—Internet of Things (IoT), Security and Privacy, Attack Graph

1 INTRODUCTION

HE last decade witnessed the rapid development and

wide deployment of IoT systems. According to [1], the
total global worth of IoT technology could be as much
as 6.2 trillion US dollars by 2025. Popular commodity IoT
platforms, such as Samsung SmartThings [2], Apple Home-
kit [3], and Google Nest [4], etc., share similar architec-
ture: low power end devices running customized firmware,
short-range, wireless communication protocols, a central-
ized decision-maker, IoT applications using trigger-action
paradigms, and companion mobile apps. IoT components
interact with each other in sophisticated ways. For exam-
ple, devices’ functionality depends on secure and reliable
communication with the controller, and devices can be
dependent on each other due to IoT applications or physical
channels. The distributed but interactive components pose
tremendous challenges to IoT system security verification
and analysis [5], [6], [7], [8], [9].

Existing research on IoT security only focuses on a single

e Zheng Fang and Hao Fu are with Meta Platforms, Inc., Menlo Park, CA,
94025, USA.

E-mail: {zhengfang, haofu} @meta.com.

o Tianbo Gu, Jinyue Song, and Prasant Mohapatra are with the Department
of Computer Science, University of California, Davis, Davis, CA 95616,
USA.

E-mail: {zkfang, haofu,tbgu,jysong,pmohapatra}@ucdavis.edu.

o Pengfei Hu (Corresponding author) is with School of Computer Science
and Technology, Shandong University, Qingdao 266237, China.
E-mail: phu@sdu.edu.cn.

o Trent Jaeger is with Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802, USA.
E-mail: tjaeger@cse.psu.edu.

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

or a subset of the IoT components. For instance, [10], [11],
[12] analyze IoT device firmware, [13], [14] investigates IoT
wireless protocols, and [5], [6]], [15] sanitize IoT applications.
However, for interconnected systems, hardening individual
components cannot guarantee security because there are
multiple paths to compromise system resources. For exam-
ple, attackers can unlock a smart doorlock by exploiting vul-
nerabilities on the lock [16], but they may also compromise
an indoor camera [17] and use it to inject voice, triggering
a smart speaker to launch the door-open command [18]. In
this paper, we try to address the following research problem
— How to verify IoT systems security and uncover threats
in a systematic way?

Attack graphs [19], [20], [21] provide us an elegant
approach to the problem by enumerating all of the paths
to potential attack goals, i.e., system resources which can
be compromised by the attacker. There are two types of
attack graphs: state-based attack graph [20], [22] and exploit-
dependency attack graph [19], [21]. State-based attack graphs
utilize model checking as the reasoning engine. But they
suffer scalability issues in that the size of the graph grows
exponentially with the number of system state variables
(The number of system state variables is a linear function of
the system device count). In comparison, it takes polynomial
time to construct exploit-dependency attack graphs, and the
generated attack graph size is a quadratic function of the
system device count [19].

However, existing exploit-dependency attack graph
frameworks cannot be readily applied to IoT systems
due to multiple design limitations. First, existing exploit-

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 2

dependency attack graphs were designed for conventional
computer networks and do not model essential IoT compo-
nents such as IoT apps and devices’ physical dependencies.
Second, many IoT devices communicate using low-power
protocols such as Zigbee or ZWave, which most of the
existing vulnerability scanners cannot scan. For example,
all of the vulnerability scanners listed on [23] only support
IP-based devices. Moreover, existing frameworks do not
model exploits on low-power, short-range protocols which
are ubiquitous in IoT systems. Finally, there are no quan-
titative criteria for administrators to harden the system in
such a way that vulnerabilities with the largest impacts get
patched first. As today’s IoT systems may contain hundreds
of vulnerabilities, it is necessary to patch vulnerabilities
efficiently.

Goals. In this paper, our goal is to build a system-
level security analysis framework for IoTs which, given
the IoT system configurations (i.e., device, network infor-
mation, and the IoT apps installed), (a) constructs exploit-
dependency attack graphs to uncover resources that can
be compromised and reveal potential attack traces; and, (b)
computes a suite of metrics to interpret the generated attack
graph and provide recommendations for system hardening.

As exploits and devices” dependencies are the key build-
ing blocks of attack graphs, to achieve (a), we extract
exploit models and device dependencies from IoT system
configurations and represent them as Prolog clauses [24].
More specifically, IOTA scans IoT system configurations for
individual vulnerabilities and builds exploit models (consist-
ing of precondition and effect) based on scanned CVEs.
We identify three types of device dependencies: app-based
dependency, indirect physical dependency, and direct physical
dependency. The app-based dependencies are specified by
IoT app semantics (i.e., trigger-action rules). Since IoT apps’
source code can be unavailable in some platforms, such as
IFTTT [25], we utilize natural language processing (NLP)
techniques to extract app semantics from app descriptions.
The direct and indirect physical dependencies are universal
in IoT systems and thus are hard-coded as Prolog rules.
Finally, Prolog clauses are sent to MulVAL [19] to generate
attack graphs.

With regards to (b), we propose three novel metrics:
shortest attack trace to an attack goal, blast radius of a vulner-
ability, and the severity score of a vulnerability. The shortest
attack trace to an attack goal node provides the lower bound
of the attack complexity in terms of the number of exploits
to launch. A vulnerability’s blast radius tells us the potential
capabilities the attacker can get on the system by exploiting
only that vulnerability. Severity score helps us identify the
most critical vulnerability to patch when the importance of
each resource we want to protect is known. In addition,
the concept of attack evidence (defined to help us compute
blast radius) can also be used to compute the minimal set
of vulnerabilities to patch to thwart an attack goal [20]. These
metrics help administrators interpret the attack graphs, sort
the vulnerabilities based on their impacts on the system, and
make informed choices about system hardening.

To evaluate IOTA, we generate 37 synthetic smart home
IoT systems based on 532 real-world IoT apps and a list of 59
smart home devices of 26 types. We scan the CVE database
since 2010 and find 127 IoT CVEs on those 59 smart home

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

devices. Our vulnerability analysis module achieves 80.56%
accuracy for exploit precondition identification and 88.19%
accuracy for exploit effect. We manually check 27 shortest
attack traces whose depths are at least 9 and find out 62.8%
of them are beyond anticipation. In particular, the graph
analyzer module reveals a shortest trace of depth 18 for an
IoT system consisting of only 7 devices, implying that attack
traces can be very deep for even a small IoT system. The
case study illustrates the effectiveness of using the proposed
metrics to estimate attack complexity and their impacts on
the system. IOTA is highly scalable. In practice, it only takes
around 1.2s and 120MB memory to evaluate IoT systems of
50 devices.
In summary, we make the following contributions:

o We design IOTA, a novel framework to conduct au-
tomatic, system-level IoT system security analysis
and generate attack graphs showing all potential
attack traces. We provide the source code of IOTA for
download at https:/ /github.com/pmlab-ucd /IOTA.

o We design formal models for IoT exploits and imple-
ment automatic translation from system configura-
tion and vulnerability information to Prolog clauses.

e We propose three metrics to quantitatively evaluate
the attack complexity (shortest attack trace) and vul-
nerability’s system-level impacts (blast radius and
severity).

o We evaluate the efficiency and effectiveness of IOTA
by applying it to 37 synthetic IoT systems of differ-
ent sizes ranging from 4 to 50 and verify that our
framework is both effective and highly efficient.

2 THREAT MODEL

In this work, we consider individual attackers whose goal is
to break into the system. They can be physically adjacent
to the IoT system, enabling them to be within the radio
range of the wireless local area networks, such as Wifi or
Zigbee networks. Besides, the attacker can physically access
outside, unprotected IoT devices, such as a doorbell or
outdoor surveillance cameras. We also assume the attacker
is able to extract IoT app semantics because he can install
sniffers and infer event type from the sniffed packets [26].
We treat the remote IoT cloud as trustworthy and do not
consider the compromise of the cloud itself. However, if
there exist vulnerabilities on the companion mobile app, the
attackers can spoof commands to the remote cloud. Below
we discuss the major threats to each of the IoT components
in detail.

2.1 Device

We use the term “IoT devices” to refer to both end devices
and infrastructure devices such as routers and gateways.
Most of the device vulnerabilities are rooted in the firmware
[10], [27], [28]. However, some vulnerabilities are found in
the device’s physical components [29], [30]. Once a device is
compromised, it can be used to attack other components of
the IoT system in three different ways. First, if the attacker
gets root privilege on a device such as a router, he can send
spoofed commands to other devices on the same network.
Second, the attacker can utilize the compromised device to
inject cyber events, such as spoofing a motion event. More-
over, the attacker can take advantage of the devices’ physical

Xplore. Restrictions apply.

https://github.com/pmlab-ucd/IOTA

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 3

Vulnerability Scanning &
Dependency Extraction

Exploit Modeling

Attack Graph
Generation

Attack Graph
Analysis

Exploits

Shortest
attack trace

i'Attack Goals

|

Blast radius

[Trace ‘ Attack Graph
’ IGen?rator Graph i |_Analyzer

Intermediate J
ts

Formal App Rep

App Semantic
Extractor

Prolog |
Translator H -
clauses) i\reasoning resul

Severity

|
Generator | |

Fig. 1: IOTA pipeline. The blue boxes are IOTA modules. The green, red, and gray boxes represent input, output, and
intermediate results, respectively. The Attack Goals can be set by the system administrator and is optional.

dependencies to compromise other devices. For example, if
the attackers can control the heater, they can increase the
room temperature, which will trigger a temperature sensor
event.

2.2 Network

IoT systems utilize short-range, low-power protocols to
communicate with the end devices, which allows adjacent
attackers to sniff the wireless traffic. These end devices are
first connected to a gateway (sometimes called base station,
bridge, or hub) in order to communicate with the internet.
Since generally there is no firewall or MAC address filtering
in most smart home networks, if the attackers gain access to
the network, they can send spoofed packets to other devices
on the same network. To make things worse, many IoT
devices, such as routers, cameras, or thermostats, expose
unprotected network services to the home network, making
it possible for the attackers to compromise these devices
after they join the home network.

2.3 loT application

IoT applications are designed using the if-this-then-that
paradigm, where this represents IoT event(s) and that repre-
sents some device actions. IoT apps introduce dependencies
among devices, which expose new attack surfaces to the
adversary. Consider “If smoke is detected, sound the alarm
and open the window.” as an example. To open the victim’s
window, the attacker does not have to attack the window
opener directly; instead, he can just compromise the smoke
detector, and the IoT app will do the rest of the attack for
him. Even though the attacker must know the app has been
installed before exploiting it, people have shown this can be
done via wireless sniffing [26], [31].

2.4 Physical channel

One of the unique features of IoT systems compared with
other networked systems is that IoT devices can interact
with each other via the physical channels. There is a dis-
tinction between the IoT physical channels and the physical
layer of the computer networks: The former is shared phys-
ical environments, such as air, temperature, and humidity,
whereas the latter is electromagnetic signals transmitting
raw bitstreams. While IoT app-based device dependencies
will only exist if the app is installed by the user, physical
device dependencies always exist in an IoT system as long
as the relevant devices are installed. An attacker can uti-
lize various physical dependencies to launch attacks. For
instance, he can first compromise the indoor camera, e.g.,
Nest Cam IQ Indoor, and use it to inject human voice

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

TABLE 1: Comparison of IOTA with other IoT security

analysis frameworks.

Inter-app
Analysis

Attack
Graph
v v

Direct
Phy. Dep.
v

Indirect
Phy. Dep.

Mitigation

6 @ Guidance

Framework

lota
ToTSafe [32]
ToTSeer [33]
IoTMon |7]
IoTSan |5]
Soteria [6]

NERE

NN

commands. The smart speaker will receive the voice and
issue the corresponding command to the actuator.

3 SYSTEM OVERVIEW

IOTA is a framework for automatic IoT attack graph gen-
eration and analysis. The generated attack graphs show all
of the attack traces to IoT system resources that attackers
can compromise. Based on the attack graphs, we further
propose two metrics to provide recommendations for sys-
tem hardening. Prior research on IoT system security [5],
[6l, 17], [32], [33] only focuses a subset of the essential
IoT components, which neither uncover all of the attack
traces nor provide guidance on how to prioritize patching
vulnerabilities when there are dozens or hundreds of CVEs
in an IoT system. In Table [I} we compare IOTA with other
frameworks on identifying IoT vulnerabilities at the system
level. The related work can be found in Section [7]

Figure [1|illustrates the pipeline of IOTA, which consists
of four stages. Vulnerability Scanning and Dependency
Extraction stage scans the devices and network protocols
for vulnerabilities and extracts IoT app semantics. It also
extracts direct device dependencies from the system config-
uration file. Exploit Modeling stage maps vulnerabilities to
exploits based on the vulnerability description and Com-
mon Vulnerability Scoring System (CVSS) [34] scores such
as Attack Vector and Confidentiality, Integrity, Availability
(CIA) triad. Exploits, direct dependencies, and app-based
device dependencies are then translated to Prolog clauses.
Attack Graph Generation stage reads attack goals (op-
tional) and the translated Prolog clauses and generates IoT
attack graphs. If the user does not provide attack goals, we
enumerate all system resources (i.e., privileges on devices
or tamper of the physical features) as potential attack goals.
Then we modify the intermediate reasoning results and
send them to MulVAL [19] to generate attack graphs. Attack
Graph Analysis stage takes the generated attack graph as
input and computes three metrics: the shortest attack traces
to attack goal nodes and the blast radius and severity score
of each vulnerability.

The input to our framework is a system configuration
JSON file containing device name, device type, the network

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 4

Ring Smoke Listener

ey

7
-

~

= -
= [9
~
Samsung Smart Oven ~ =

Wi-Fi
~ \ - " .
Ring B: tati
~ a\\ - ing Basestation

=

-
Nest Connect p, |

e |

~ /{ = ~
080 D-Link Router
)

SmartThings Hub

Nest Yale Lock

etooth

T
(@)
SmartThings Motion Sensor

Fig. 2: IoT system example.

the device is on, and the IoT apps. A configuration example
for IoT system in Figure 2| is provided in Listing [11] in
Appendix [A] It is IoT System 11 in Table [} which consists
of 8 devices and 4 wireless networks.

4 |oTA DESIGN

In this section, we explain the design of the IOTA modules
as shown in Figure

4.1 Vulnerability Scanner

To the best of our knowledge, there are no existing vul-
nerability scanners readily available for low power com-
munication protocols such as Zigbee or Bluetooth Low
Energy (BLE). Therefore, we design a vulnerability scanning
approach based on CVE database searching. Our approach
is practical because of some device vendors’ ignorance of
vulnerability report [35], [36] and the slow firmware up-
grade rate [12].

Given the IoT devices installed and the communication
protocols used, the Vulnerability Scanner module searches
the CVE database [37] for vulnerabilities. We fetch the
CVE JSON feeds since 2010 from the National Vulnerability
Database (NVD) [38] and parse the JSON files to get infor-
mation relevant to our exploit modeling, including impact
score, exploitability score, exploit range, exploit result (CIA
triad), and the vulnerability description. The parsing results
are stored in a local MySQL database. In total, there are
121,210 CVEs from 2010 to April 2021. After discarding
CVEs without CVSS information, our database contains
113,180 records. For each device instance listed in the system
configuration file, we query the database for the device
name using full-text search in boolean mode to make sure it
only returns CVE records when all of the query keywords
appear in the CVE description.

The scanned vulnerability on each device is then trans-
lated to Prolog facts. For example, the following fact shown
in Listing [T[jmeans vulnerability CVE-2018-3904 exists on

smartthingsHub.
vulExists (smartthingsHub, ’'CVE-2018-3904").

Listing 1: Prolog fact for a CVE found on a device.
4.2 Dependency Analyzer

The Dependency Analyzer module models how IoT de- -
vices interact with each other via physical channels. We °

identify and define two types of physical dependencies:
direct dependency and indirect dependency. Two devices

TABLE 2: IoT device direct dependencies and examples.
Direct Dependency Example

Electrical Outlet — AC; Switch — Light bulb
Mechanical Door lock — Door opener
Utility Water valve — Sprinkler; Gas valve

— Stove

the door opener cannot open the door if the door lock is
locked. We define the third type as utility dependency. For
example, gas valve and smart stove are dependent via gas.
Even though direct dependencies can have a huge impact
on IoT system security, they are overlooked by existing IoT
security analysis frameworks.

Two devices are indirectly dependent if one of them is an
actuator and the other is a sensor. We consider and model
six physical channels: temperature, humidity, illuminance,
voice, smoke, and water. We include “voice” as a physical
channel because many devices like cameras and TVs can
play human voice in the smart home, and some devices
can recognize human voice and execute the corresponding
instructions.

For indirect physical dependencies, we identify the
physical channels a device can sense and modify using NLP
techniques. Google Assistant [39] lists all the traits a device
can have for each device type. A trait consists of attributes
(i.e., sensor readings) and commands (i.e., capabilities). We
use Stanford CoreNLP framework [40] and Natural Lan-
guage Toolkit (NLTK) [41] to parse the natural language
description for each attribute and command description to
extract nouns. After that, we use the Word2Vec model [42]
to get the embedding of each noun and the six physical
channels, and then compute cosine similarity between each
noun and each physical channel. If the similarity is larger
than threshold, we add corresponding physical channel to
set of channels the device senses or modifies. NLP results
are sent to Translator module to generate Prolog rules.

Direct physical dependencies are hard-coded as Prolog
rules because they are universal in all IoT systems, regard-
less of the installation of certain IoT apps. Besides, since
there are limited kinds of direct dependencies, hard-coding
them guarantees accuracy. During the execution of a Prolog
program, a certain dependency rule will be activated only
when the corresponding device is installed. For example, if
AC is on, then the room temperature will be low. But if there
is no temperature sensor installed, the predicate of sensor
reporting low temperature will not hold true. Listing 2]and
Listing |3| are example of Prolog rules for indirect and direct
dependencies, respectively. The first Prolog rule in Listing 2]
means if the oven is on, then there will be smoke, and the
second rule means if there is smoke, the smoke detector will
report smoke. Listing[B|means if the outlet is turned off, then
any device plugged into it will also be off.
exists (smoke) :-—

on (Oven) ,
oven (Oven) .

5 reportsSmoke (SmokeDetector) :-—

are directly dependent if they are both actuators. There are 7

three types of direct dependencies as listed in Table [2| The
most common direct dependency is electrical dependency,
such as the one between smart outlet and air conditioner.

The second type is mechanical dependency. For example, -

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httg
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

exists (smoke),
smokeDetector (SmokeDetector)

Listing 2: Indirect physical dependency.

off (Device) :-—
plugInto (Device, Outlet),
outlet (Outlet),

Xplore. Restrictions apply.

s://www.ieee.orE/Eublications/rights/_inqex.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 5

off (Outlet) .

Listing 3: Direct physical dependency.
4.3 App Semantic Extractor

The App Semantic Extractor module extracts semantic in-
formation from IoT app descriptions using NLP techniques.
Compared with program analysis, analyzing IoT app de-
scriptions in NLP is more applicable in that app descrip-
tions are publicly available while IoT apps’ code may be
proprietary on some platforms. In smart home platforms,
developers write a short description to explain the func-
tionality of their IoT apps to smart home users. Typically,
these app descriptions are written in “If this, then that”
form, which makes it suitable for NLP techniques. In the
description sentence, the conditional clause represents the
trigger, i.e., “if-this” part, while the main clause represents
the action, i.e., “then-that” part.

We follow the techniques used in SmartAuth [43] and
IOTGAZE [26] and use Stanford CoreNLP framework and
Natural Language Toolkit (NLTK) for app description anal-
ysis. Given an app description, we use CoreNLP parser to
construct the constituency parse tree and split the sentence
into the conditional clause and the main clause based on tree
node labeled SBAR (subordinate clause). We do a breadth-
first search on the parse tree to find the tree node with
label SBAR, which is the root of the conditional clause.
Then the conditional clause is obtained by concatenating the
leaf nodes of the subtree whose root node has label SBAR.
We construct the main clause by removing the conditional
clause string from the whole sentence.

Because the conditional clause and the main clause may
contain multiple conditions or actions, we further split each
clause into simple sentences based on tree node labeled
CC (coordinating conjunction). The coordinating conjunc-
tion represents either logic AND or logic OR relationship
between the two simple sentences. For example, the split of
IoT app “Unlock the door when there is smoke.” is shown
in Listing [4] Since both the conditional clause and the main
clause contains just one simple sentence, the relationship is
set to ' NONE”' .
conditional: (" NONE’, [’there is smoke’])
main: ("NONE’, [’"Unlock the door’])

Listing 4: Splitting clauses into simple sentences for the IoT
app Unlock the door when there is smoke.

After splitting each clause into simple sentences, we
extract noun and verb phrases from each simple sentence
and match them to IoT device names and device action
using Word2Vec similarity. We use a regular expression
chunker to extract noun phrases and verb phrases. The
regular expression patterns we use for chunking and the
extracted phrases for the SmartApp description are shown
in Listing [5|and Listing [6] respectively.

NP :
VP:

{<DT>?<JJ>*<NN.*>+}
{<VB.*><IN|RP>?}

Listing 5: Regular expression patterns.

conditional clause: [([’smoke’],
main clause: [([’the door’],

["is"1) 1]
["Unlock’1])]

Listing 6: Noun and verb phrases extracted for the IoT app
Unlock the door when there is smoke.

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httg
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

Finally, we use Word2Vec model to match the extracted
noun phrases and verb phrases with our pre-defined list of
devices and device actions. Since Word2Vec only computes
similarities between individual words, we compare each
word in a noun phrase against each word in a device
name. The app semantic extraction result is represented as
a Python tuple shown in Listing|7| This internal representa-
tion is used together with app configuration information in
the Translator module to generate Prolog rules.

(NONE’, [’smoke detector’],
lock’], ["unlock’])

["on’], 'NONE’, [’door

Listing 7: Internal representation of the IoT app semantic.
4.4 Vulnerability Analyzer

The Vulnerability Analyzer module maps vulnerabilities
to exploit models. Exploit modeling is essential for attack
graph construction because attack traces are composed of
individual exploits. To the best of our knowledge, our work
is the first to attempt to automatically generate exploit models
based on CVEs’ natural language description and CVSS
scores. Though MulVAL [19] formally represents exploits
as Prolog rules, it only considers privilege-escalation in
computer networks. Our exploit models are designed for
generic IoT systems and consist of exploit precondition and
effect. A precondition is the privilege the attacker should have
in order to launch an exploit. An effect is the direct result of
an exploit.

Precondition. For IoT systems, we define five types of
preconditions: Network, Adjacent physically, Adjacent locally,
Local, Physical (details in Table[8|in Appendix|C). Because IoT
systems typically involve low-power, short-range, wireless
protocols such as Wifi or ZigBee, the physically or logically
adjacent precondition should be defined for each network
type specifically, such as Wifi adjacent logically,
Zigbee adjacent physically, etc. We cannot just use
the “attack vector” value as the precondition of each CVE in
the NVD database because that field can be ambiguous or
sometimes incorrect: According to [44], it assigns “network”
as the precondition whenever there is a lack of information
to decide the exploit range. Besides, the value does not
differentiate “physically adjacent” and “logically adjacent”.

We predict the exploit precondition based on protocol
type, CVE description, and the CVSS attack vector. If an
exploit’s attack vector is local or physical, we keep
its value. If the attack vector is adjacent, we check its
CVE description. If the description contains keywords such
as “sniff”, “decrypt” or their synonyms, we will assign
the precondition as adjacent physically, otherwise
adjacent logically. Like Dependency Analyzer, we
use Word2Vec to compute the cosine similarity to decide
whether the keyword or its synonyms are in the CVE
description or not. If the original attack vector is network,
we will first check the protocol. If the protocol is a low-
power protocol, then we invoke the approach of determin-
ing adjacent; otherwise, we set precondition to network.

Effect. From an attacker’s perspective, exploit effects
include gaining privileges on IoT devices, accessing wireless
traffic, or making devices denial-of-service. We categorize
exploit effects into six types: Root, Device control, Command
injection, Event access, Wifi, access, DoS (details in Table E] in
Appendix [C). If attackers get root privilege on a device,

Xplore. Restrictions apply.

s://www.ieee.orE/Eublications/rights/_inqex.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 6

they can use it to attack other devices by sniffing or spoofing
wireless traffic. The device control privilege implies
both command injection and event access privilege,
but not capability of attacking other devices on same system.

For each vulnerability, we decide its exploit effect based
on the CVE description and confidentiality, integrity, and
availability (CIA) subscores of CVSS. We first seek to ex-
tract the effect from the CVE description by matching the
keywords for each effect type. If the description does not
contain any keywords, we try to identify the exploit mecha-
nism defined in [45] and communication protocol from the
description using the same keyword matching approach. In
combination with the CVSS’ CIA subscores, we can infer the
exploit effect. For example, suppose the exploit mechanism
is buffer overflow. Then we check the CIA subscores to set
the effect to denial of service (if only the availability
score is greater than the threshold), or root privilege (if
confidentiality, integrity, and availability are all greater than
the threshold).

Probability. We compute probability based on the ex-
ploitability subscore of the CVSS score for each CVE, which
considers key factors such as attack vector, attack complex-
ity, privileges required by the attacker, user interactions (for
example, the DNS rebinding exploit requires the user to
click a bait website), and attack timing (e.g., an exploit is
effective only when the device is unpaired). We convert the
exploitability subscore to exploit probability by rescaling the
exploitability subscore to the range of 0 to 1. With exploit
probabilities, we can compute the probability of each node
on the attack graph using the formula given in [46]. Our
graph analyzer implements probability computation, which
is used as one of the building blocks of the severity metric
defined in Section l4.6]

The exploit models are also translated to Prolog facts.
For example, the vulProperty fact in Listing (8| is the
exploit model for CVE-2020-8864. The precondition is the
attacker being on the same Wifi network as dLinkRouter
and the effect is that the attacker gets root privilege on this
device. The exploit probability is 0.7.

vulExists (dLinkRouter, ’'CVE-2020-8864").

> vulProperty (' CVE-2020-8864", wifiAdjacentLogically,

rootPrivilege) .
Listing 8: Prolog fact for an exploit model.
4.5 Attack Graph Generator

The Attack Graph Generator module takes the Prolog rule
and fact file as input and verifies whether the attack goals
(either provided by the administrator or automatically gen-
erated by IOTA) can be achieved. If a goal can be achieved, it
will generate the attack graph showing all the attack traces;
otherwise, the IoT system is protected from that attack goal.
When the administrator knows his security objectives, he
can set the attack goal by taking the logic NOT of the
objectives. For example, if the objective is to protect camera
from being rooted, then the attack goal is root privilege on
the camera. When there are no security objectives specified,
we enumerate all potential privileges attackers may get on
all devices as attack goals.

Figure 3|shows a small attack graph, where node 18 and
node 23 represent the attack goals: to spoof a motion sensor
event and to unlock the doorlock, respectively. The meaning

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

078
)","AND".0.78
"LEAF",1.0

orresponding end devices)"," AND",0.702

AND"0.6318

mode to home.)"," AND".0.6318

n there is smoke)"," AND".0.1238

ere is smoke)”,”AND",0.1238

Fig. 3: IoT attack graph example. The meaning, type, and
probability of each node are shown on the right.

of each node is annotated on the right of the figure. The
attack trace (formally defined in Section to these attack
goal nodes are highlighted in red and blue. To reach node
23, the attacker first gains root privilege on the SmartThings
hub from the internet. Then he spoofs a motion sensor event,
and utilizes two IoT apps to turn on the oven. The oven
causes smoke, which is sensed by a smoke detector. Finally,
IoT App 3 unlocks the doorlock when there is a smoke
alarm. For complicated attack graphs, there can be multiple
attack traces to the same attack goal node.

Essentially, there are three kinds of nodes. The rectangle
nodes represent primitive facts about the system state or the
attacker state that are true before the exploit happens. The
ellipse nodes represent Prolog rules, such as exploits or apps’
execution. The diamond nodes stand for derivation, viz., new
states about the system or the attacker after launching an
exploit or executing an app. A derivation node can also be
a precondition of another rule node. A detailed explanation
of attack graph structure can be found in [19].

4.6 Attack Graph Analyzer

Because the generated attack graph can be gigantic, con-
taining thousands of nodes, it is impractical to visualize the
graph. Therefore, we propose two metrics to extract critical
attack traces and quantify the impact of vulnerabilities.
Shortest Attack Trace. Among all of the attack traces
to a specific attack goal, the shortest attack trace takes the
minimum number of exploits and provides a lower bound
of the attack complexity to that goal node. For instance, the
shortest attack trace to the goal node (node 5) in Figure
is highlighted in red whose depth is 12. Below we formally
define the shortest attack trace and relevant concepts.

Definition. (Attack Trace) Given an attack graph G, an at-
tack trace to a derivation node n is a subgraph G’ satisfying
the following conditions: (1) Any OR node of G’ has only
one incoming edge; (2) Any AND nodes of G’ has incoming
edges from all its parent nodes; (3) All source nodes of G’
are primitive fact nodes; and (4) Sink node of G’ is node n.

Definition. (Depth of an Attack Trace) The depth of an
attack trace is the longest path from any primitive fact node
to the sink node of the attack trace.

Definition. (Shortest Attack Trace) For a given attack graph
and a derivation node n, the shortest attack trace is the
attack trace to n with the smallest depth.

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 7
V2 v3 is useful for other important problems. For example, we

‘ 7 ‘ ‘ 8 ‘ ‘ 9 ‘ ‘ 10 ‘ can use it to compute the minimal set of vulnerabilities to

> g’/\) é patch to thwart an attack goal defined in [20]. We can count

L R— \ / - the occurrence of each vulnerability in the attack evidence

<A e and iteratively choose the vulnerabilities in descent order

/ ‘ of occurrence; if the current vulnerability is in the same

vl 1, v2: 1, v3: 04,

[«— Attack Evidence

{vl:1,v2:0,v3: 1}}

Fig. 4: Example attack graph and the corresponding attack
evidence for node 1 and node 4. Node 3, 7, and 9 are
primitive fact nodes describing different vulnerabilities rep-
resented as vl, v2, and v3.

We cannot apply Dijkstra’s algorithm to the shortest at-
tack trace problem because our definition of shortest attack
trace is different from the shortest path in graph theory:
(1) There can be multiple source nodes; (2) The attack trace
is a subgraph, not a path. Hence, we design a recursive
algorithm (Algorithm [1] in Appendix [B) to compute the
shortest attack trace to a specified attack goal node. The
depth of a leaf node is defined as 0.

Blast Radius. The blast radius measures each vulnerabil-
ity’s impacts on the IoT system and can be used for system
hardening. For example, if vulnerability A’s blast radius is a
superset of that of vulnerability B, we conclude A’s impact
is bigger than B’s, and therefore we should fix A first.

Definition. (Blast Radius (BR)) Given an attack graph, the
blast radius of vulnerability v is the set of all of the privileges
(represented as derivation nodes) the attacker gets after
exploiting only v.

As there can be more than one trace to a certain node,
and a vulnerability can be used in multiple attacks, we
must keep track of vulnerabilities involved for each trace
to a certain node in the attack graph. We come up with the
following concepts to help us compute the blast radius of
each vulnerability.

Definition. (Condensed Attack Trace (CAT)) Given an
attack graph G, the condensed attack trace of a node n is
the map from all of the vulnerabilities on G to 0 (when
the vulnerability is not used) or 1 (when used) along some
attack trace to n.

Definition. (Attack Evidence) The attack evidence of a
node n is the set of its condensed attack traces.

Figure [4| illustrates an example attack graph and the
corresponding attack evidences for node 1 and node 4. Since
there are two attack traces to node 4 involving different
vulnerabilities, the attack evidence for node 4 contains two
elements, so is node 1. We compute the vulnerability evi-
dence for each node in a forward fashion from leaf nodes
to the goal nodes. Our merging algorithms are explained
in Algorithm [2| and Algorithm [3| in Appendix After
getting the vulnerability evidence for each node, we can
determine whether a derivation node should be included
in some vulnerability’s blast radius using Algorithm [4 in
Appendix Bl The complete blast radius algorithm is given
in Algorithm [5|in Appendix

Attack evidence provides a summary of vulnerabilities
involved along each attack trace to a certain node and

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

condensed attack trace of some chosen vulnerability, then
we consider the next one. The iteration stops when all of the
condensed attack traces contain at least one vulnerability
chosen. For another application, if administrators assign
numerical values as the complexity of each exploit, they can
calculate the complexity of each attack trace by summing
the exploit complexity for each condensed attack trace.

Severity. Even though a vulnerability’s blast radius
shows all of the privileges the attacker can get by exploiting
only that vulnerability, it treats these privileges equally.
However, this is usually not the case in reality. For example,
the attacker’s being able to unlock a doorlock is much more
severe than turning on a smart light bulb. Hence, we come
up with the metric of severity (also called severity score)
for system administrator to sort the vulnerabilities if all
the attack goals in an attack graph is known. The severity
score of a node is a non-negative number representing its
contribution to all of the attack goal nodes. The larger a
node’s severity is, the more it contributes.

Our definition of severity is different from CVSS” impact
score in that ours consider the impact of a vulnerability
on all of the compromised system resources (represented
as attack goals), whereas the latter considers the immediate
impact. For example, if a CVE enables an attacker to get
the root privilege on a device, then the CVSS” impact score
represents this step, not considering any implied results,
such as attacker using the rooted device to compromise
another device and ultimately reaching his goal. Besides,
severity scores work well in the case of physical channels
because they are computed based on the generated attack
graph, which contains all of the potential attacks, includ-
ing both cyber attacks and physical attacks. The physical
dependencies are represented as edges in the attack graph,
just as cyber attacks, if they can be utilized by the attacker
to compromise the final attack goal.

Computing the severity score for each node requires
the following as input: (1) the probability of each node
of the attack graph, and (2) the severity of attack goal
nodes. The severity of a goal node can be converted from
the importance of the resources it represents and is set
by the administrator. For example, we set the severity of
controlling a smart lock to 100, due to its significance for the
smart home; in comparison, we set the severity of turning
off the coffee machine to 5, since it is not important as an
attack goal. The probability of each node of an attack graph
is computed using [46].

The severity for each node is computed backwards, from
attack goal nodes to the leaf nodes. Our formulas to back-
propagate severity are shown in Figure |5/ If node 0 is an
OR node with severity Sy (as the subfigure on the left), then
the larger the probability of a parent node is, the more likely
will that parent node lead to the OR node. Hence, we should
assign a larger portion of Sy to that parent node. In contrast,
if node 0 is an AND node (as the subfigure on the right), all
of its parent nodes must be true simultaneously. Thus the

Xplore. Restrictions apply.

@

5o =

s inNetwork (smartthingsHub,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 8

S1=E1/(EI+E2) * SO

s 2
Pl N\ / P2
oo

S1=P1/(P1+P2)*S0 S2=P2/(P1+P2)*S0 S2=E2/(E1+E2) * SO

(1) (C2
PN, P

po S0 »0

Fig. 5: The formulas to back-propagate severity scores for
AND and OR nodes. P; and F; (F; = —log P;) mean the

probability and entropy of node ¢, respectively.

SO

parent node having the smallest probability becomes the
most critical condition and should get the largest portion
of Sp. The formula can be generalized to the case where
there are more than 2 parent nodes. Suppose node 0 has k
parent nodes with probabilities P; to Py, then the severity of
parent node i is computed as S; = P;/(P1 + -+ + Py) X So.
The formula for AND node can be generalized similarly.
Our backward computation algorithm is summarized in
Algorithm[6]in Appendix

5 IMPLEMENTATION

The IOTA modules are implemented in Python using 2475
LoC. Physical dependencies and exploit rules are imple-
mented in Prolog using 1179 LoC. The framework utilizes
MySQL Connector Python libraryfor database operations
and MulVAL [19] for attack graph generation.

Translator. The Translator module converts IoT system
configuration and vulnerabilities to Prolog clauses. The ini-
tial system configuration (specified in JSON format) is sent
to the Translator module to generate Prolog facts. Listing
[shows part of the translation result of the example IoT
system configuration input in Listing [11)in Appendix

router (dLinkRouter) .
inNetwork (dLinkRouter, wifil) .

gateway (smartthingsHub) .
inNetwork (smartthingsHub, wifil).
zigbeel) .

wifi (wifil).
zigbee (zigbeel) .
Listing 9: Translated Prolog facts on system configuration.

IoT apps are first sent to the App Semantic Extractor
and then translated to Prolog rules. For example, the app
configuration for IoT System 11 is shown in Listing [11]in
Appendix [A] The Translator combines parsed app semantic
tuple (Listing |7) and the app configuration to generate
Prolog rules, as shown in Listing [10}
unlocked (DoorLock) :-—

doorLock (DoorLock) ,
reportsSmoke (SmokeDetector)

Listing 10: Prolog rule for IoT app Fire alarm.

Attack Graph Generator. The Attack Graph Generator
concatenates exploit rules, indirect physical dependency
rules, and the translated IoT app rules into a Prolog rule file.
It also combines all the translated Prolog facts (including
facts about device and network configuration and direct
physical dependencies) and vulnerabilities (i.e., vulnerabil-
ity existence facts and exploit model facts) into a Prolog fact
file. The attack goals are also inserted into the Prolog fact
file. After that, the rule and fact file are then sent to MulVAL
[19] library to generate the Prolog reasoning log file and the
attack graph.

1. https:/ / github.com/mysql/mysql-connector-python

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

TABLE 3: IoT app analysis results on different IoT platforms.
#
Total Apps # Cor-
IoT Platform # in Percent | rectly Acc*
Apps | IFTTT Parsed
Form
ADT 19 10 52.6% 6 60%
Arlo 42 18 42.9% 10 55.6%
August 28 20 71.4% 13 65%
Belkin 27 16 59.3% 11 68.8%
Hue 37 19 51.4% 13 68.4%
Nest 84 67 79.8% 45 67.2%
SmartThings 184 63 34.2% 46 73%
Total 421 213 50.6% 144 67.6%

*: Acc = #Correctly Parsed /#Apps in IFTTT Form

6 EVALUATION
6.1 Dataset

To evaluate IOTA, we generate synthetic IoT systems based
on real-world IoT apps and device instances. We use a
top-down approach to generate IoT systems by choosing
the IoT app bundles first, as they determine the whole
system’s functionality. Once we have determined the IoT
app bundle for the system, we create system instances by
selecting device instances. To emulate the scenario where a
user installs IoT devices but does not connect them to any
IoT apps, we add individual IoT devices in one-third of the
system instances created.

We consider SmartApps in the SmartThings Repository
[47], and IFTTT applets [48] for SmartThings platform and
create a pool of 421 IoT apps. We build a list of 59 smart
home devices of 26 types, covering all of the device types
listed on SmartThings Products List [49], from motion sen-
sors, outlets to home appliances like TV, smart oven, etc. The
devices are from 16 different platforms, all of which, except
Roku, HP, and Aqara, are listed on Smartthing Partners
[50]. In total, we create 37 IoT system instances. The first
18 instances are created based on the 6 app bundles used
in [51] (which contains malicious apps), while the next 12
instances are generated based on 4 app bundles chosen from
our app pool (which are treated as benign apps). The last 7
systems are of bigger size, with at most 50 devices, to further
evaluate the scalability of our framework.

6.2 Results

App Semantic Extraction. To evaluate our NLP-based IoT
app semantic extractor, we collected 421 IoT apps from 7 IoT
platforms and ran our app semantic extractor module on
them. The results are shown in Table [3| From the table, we
can see that, on average, 50.6% of the IoT apps are described
using if-this-then-that form. And for the apps that are in
if-this-then-that form, our module achieves 67.6% accuracy.
This is because even though some apps’ descriptions are in
if-this-then-that form, they are either too general or ambigu-
ous. For example, there are 17 such cases in SmartThings’
SmartApps and here are some of them: “Receive notifi-
cations when anything happens in your home.”, “Trigger
Simple Control activities when certain actions take place in
your home.”, and “Play or pause your Speaker when certain
actions take place in your home.”

Dependency Analyzer. For indirect physical depen-
dency between different devices, our dependency analyzer
module automatically detects the physical channels each
device senses or modifies. We evaluate the effectiveness of

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 9

TABLE 4: Physical channels identified for different device
types. T: temperature, H: humidity, I: illuminance, V: voice,
S: smoke, W: water. () represents channels identified by our
module, while v represents channels confirmed by manual
examination.

TABLE 5: CVEs on typical IoT devices.

Typical CVE(s) Scanned
CVE-2019-18980
CVE-2020-6007
CVE-2019-5035, CVE-2019-5036, CVE-2019-5037
CVE-2019-10999
CVE-2019-9483
CVE-2019-17627
CVE-2019-17098

Device Instance
Hue Wifi Bulb
Hue Bridge
Nest Cam 1Q Indoor
D-Link DCS Camera
Ring Doorbell
Yale Lock

Device Type T T Vv S W August Bridge
@) Smartthings Hub CVE-2018-3904, CVE-2018-3917, CVE-2018-3919,
AC v va i CVE-2018-3925
@) Xiaomi Gateway CVE-2019-15913, CVE-2019-15914
Camera va Arlo Basestation CVE-2019-3949, CVE-2019-3950
O Sonos Speaker CVE-2018-11316
Heater 7 7 Xiaomi Motion Sensor CVE-2019-15913
Humidifier 9
Accuracy: 80.56% Accuracy: 88.19%
Light Bulb © O . .
v 1 B 59% 11.8% 00% 0.0% A B 2.3% 4.5% 0.0% 0.0%
O
Smoke Detector » »n A 9 7 v
v £2(23.1% 7% 0.0% 0.0% g B|lei% 0.0% 0.0% 0.0%
Sprinkler 9 Q O C|62% 18.8% RIFA 0.0% 0.0%
5 53| 0.0% 273% 0.0% =
Speaker) 2D|00% 0.0% 0.0% [0.0%
P v £ £
= 9 g P 53 9 q =
v 9 c4 0.0% 0.0% 0.0% EREEZAE 11.1% S E|00% 00% 00% 0.0%
5/ 0.0% 0.0% 0.0% 0.0% KU F|00% 0.0% 00% 167% 0.0%
40 1 2 3 4 5 A B (o} D E F
Target Class Target Class
35+ B
(@) (b)

RN W
S w S
T T T
I I I

—_
n
T
L

CVE count

10 - q

Fig. 6: The number of CVEs scanned on IoT devices.

the module using Google Home device descriptions [39],
which specify the traits for each device type. We crawl the
natural language descriptions of the traits and capabilities
associated with different device types and run our module
to identify the physical channels they interact with. The
results are listed in Table [4} From the table, we can see that
7 out of the 11 physical channels are correctly predicted for
different devices, except AC, heater, and light bulb. The AC
and heater missed the humidity because there is no such
keywords related to humidity in the trait descriptions. The
light bulb has temperature as one of the channels it modifies.
This is because the description of the ColorSetting trait
uses the word “temperature” to represent color temperature.

Vulnerability Scanning. The vulnerability scanner
queries CVE database with the full name of a given IoT
device instance. The scanning result is shown in Figure

where the devices with the largest number of CVEs
are illustrated. On average, there are 7.2 CVEs per device.
Figure|6|shows that device types with the largest number of
detected vulnerabilities are routers, cameras, and gateways.
The reason could be that due to their pivotal position in IoT
systems, security researchers tend to analyze these types of
devices. We manually checked all CVE records and found
out that 94.2% of them are relevant to the queried device.
The typical devices and their CVEs identified are listed in
Tablel5|

We further verified the scanned CVEs with 12 real-world
IoT devices and found out 5 of them still contain vulnerabil-
ities: we obtained the exploit scripts for Philips Wifi Bulb, D-
Link DCS-5009L Camera, and Eques Elf Smart Plug and suc-

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt] s://www.ieee.orE/Eublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

Fig. 7: (a) Confusion matrix for exploit precondition iden-
tification. Label 1 to 5 denote preconditions listed in Table
in Appendix |C| (b) Confusion matrix for exploit effects.
Label A to F represent exploit effects listed in Table [9] in

Appendix

cessfully launched attacks against these devices. For Wemo
Insight Smart Plug and Radio Thermostat, we confirmed the
existence of the vulnerabilities by matching the firmware
version of devices with the one in the vulnerability reports.

Vulnerability Analysis. We ran our vulnerability an-
alyzer on 127 CVE records of smart home IoT devices
collected by the Vulnerability Scanner module and manually
checked the accuracy of the predicted exploit precondition
and effects. The results are shown in Figure [7/| Overall,
our Vulnerability Analyzer achieves 80% and 88% pre-
diction accuracy for precondition and effect, respectively.
From Figure [/(a), we can see that the class local and
physical have the highest accuracy, because the CVSS
attack vectors for physical type is almost 100% accurate.
And for low-power protocols, most of the time, the exploit
range is local; hence, we can decide the local type with
the help of protocol type. The precondition types with the
lowest prediction accuracy are Adjacent physically
and Adjacent logically. This is because some CVEs’
descriptions provide vague information for these two types.

According to Figure[7[b), the most accurate class is root.
This is because there are multiple effective indicators, such
as keywords like “root”, “arbitrary”, etc., the CVSS sub-
scores (confidentiality, integrity, and availability subscore all
being high), and the exploit mechanism like buffer overflow,
or integer overflow, etc. With these indicators combined,
our prediction is accurate. The high accuracy for both the
precondition and effect prediction shows our module is
highly effective.

We randomly picked 10 IoT vulnerabilities and compare
the vulnerability analysis results and the groundtruth. We
get the groundtruth by manually checking the description,
CVSS score, and the references of the vulnerability on the
NVD-CVE website [38]. The results are shown in Table[10]in
Appendix [C]

Attack Graph Generation and Analysis. Table [6] illus-

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022

10

TABLE 6: Attack graph analysis results on IoT system instances.

%S # Devices | #CVEs | #Nodes | #Edges | # Goals Z‘;‘;‘&fﬁt CVE (|BR]) CVE (Severity)* CVE (CVSS)$

1 4 3 12 15 1 6 CVE-2019-18980 (4) CVE-2019-18980 (20) CVE-2020-8864 (8.8)
1 6 4 37 39 5 2,9 CVE-2020-6007 (5) CVE-2020-6007 (27.2) | CVE-2019-15913 (9.8)
8 7 4 35 44 Z (4, 10) CVE-2019-18980 (4) | CVE-2019-17098 (51.2) | CVE-2020-8864 (8.8)
11 7 3 25 26 9 (6,16) CVE-2018-3904 (9) CVE-2018-3904 (115) CVE-2018-3904 (9.9)
19 10 6 36 35 1 2,9 CVE-2020-6007 (4) CVE-2019-17627 (100) CVE-2018-3904 (9.9)
26 2 7 117 173 19 (4, 10) CVE-2020-6007 (5) | CVE-2019-17098 (166.9) | CVE-2019-5035 (9.0)
28 15 9 130 182 20 (&, 18) CVE-2019-3949 (29) | CVE-2019-3949 (1365) | CVE-2019-3949 (9.8)
32 23 11 131 186 23 2,8) CVE-2018-3904 (12) | CVE-2018-11314 (136.8) | CVE-2018-3904 (9.9)
33 31 16 209 310 23 ,10) CVE-2018-3878 (19) | CVE-2018-11314 (139.2) | CVE-2018-3878 (9.9)
37 50 28 338 577 13 2,19 CVE-2018-11314 (32) | CVE-2019-5035 (100.6) | CVE-2018-3878 (9.9)

*: When there are multiple attack goals in attack graph, (z,y) means the min and max depth of the shortest attack traces to different goals.
t:|BR] is the cardinality of blast radius of the CVE. This column shows the CVE with the largest blast radius cardinality.
: CVE (Severity) is the CVE with the highest severity score. We specify initial severity scores for different attack goals ourselves.

§: CVE (CVSS) is the CVE with the highest CVSS score(s) in the system.

TABLE 7: Distribution of the shortest depths for different
attack goals. d means the depth of the shortest attack trace
to an attack goal node.

Shortest Trace Depth Trace Count Percentage
d<4 51 36.7%
5<d<8 61 43.9%
9<d<12 24 17.3%
13<d <16 2 1.4%
d>17 1 0.7%

trates analysis results for 10 IoT system instances from the 37
instances we built. The first column is the ID of the system.
The first four rows are the analysis results for systems built
based on app bundles used in [51], and the rest of the rows
are results for systems built from our own app bundles. The
CVEs column is the number of vulnerabilities found on
the given system. We enumerate all of the system resource
compromises as potential attack goals, and the # Goals
column denotes the number of attack goals shown on the
attack graph, which can be achieved by the attacker for a
given system. From Table [6} we can see that for many IoT
systems, the vulnerabilities with the highest CVSS scores
are not the same as the ones with the largest blast radius
or severity score. This is because the CVSS score measures
the local impact of the vulnerability, without the implied
effects, while our metrics consider the impacts on all the IoT
resources of a system. For example, in IoT System 19, the
CVSS score of CVE-2019-17627 is 6.5, which is much less
than that of CVE-2018-3904. However, since it enables the
attacker to unlock the doorlock, it has the largest severity
score, as expected.

Table [7| shows the distribution of the shortest depths of
the attack traces to different goal nodes for 10 attack graphs
in Table [} From the figure, the largest portion (43.9%) of
the attack traces have the shortest depths among 5 ~ 8. To
evaluate the effectiveness of the attack graphs, we manually
check 27 shortest attack traces whose depths are at least 9.
As a result, 62.8% of the attack traces revealed by IOTA are
not anticipated by the system designers.

6.3 Case Study

Shortest Attack Trace. The shortest attack trace to the
attack goal node “opening the window” in System 28 has
a depth of 18. In this example, a physically adjacent at-
tacker first exploits CVE-2019-17098 on the smart lock
gateway to sniff the home Wifi credentials. Then he exploits
CVE-2019-3949 on the camera basestation to control the

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httg
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

indoor camera. After that, he utilizes the rooted camera to
inject the voice command “preheat the oven” into the smart
home, which is sensed by the smart speaker. The speaker
triggers the IoT app to start the oven. The oven may trigger
smoke, which is sensed by a smoke detector. Finally, another
IoT app opens the window when smoke is detected.

Blast Radius. System 37 consists of 50 different devices,
including all of the device types in Figure [6| and Wifi
printer, smart TV, humidifier and toaster, etc. The vulnera-
bility CVE-2018-11314 identified on the Roku TV has the
largest blast radius, whose cardinality is 32. By exploiting
CVE-2018-11314, the attacker on the internet can control
the smart TV and play arbitrary video. System 37 has
multiple voice-related IoT apps installed, such as turning
on/off the light, turning on/off the humidifier, opening
the window, and locking/unlocking the door if the smart
speaker receives the corresponding voice command. As a
result, after compromising the TV, the attacker can control
those end devices by playing videos containing the voice
commands. The attacker can further compromise physical
environment features such as illuminance and humidity.
The blast radius of CVE-2018-11314 directly tells system
administrators about all these compromises caused by this
vulnerability.

Severity. System 19 consists of 10 devices, includ-
ing contact sensor, temperature sensor, doorlock, smart
bulb, smart speaker, and gateways. According to Table
[l even though CVE-2020-6007 has the largest blast ra-
dius, which contains 4 privileges which can be obtained
by the attacker, these privileges are all about controlling
the bulb and the room’s illuminance. Because the system
administrator assigns small severity to these compromises,
the severity of CVE-2020-6007 is 60.98. In comparison,
CVE-2019-17627’s blast radius only contains attacker’s
controlling the doorlock. However, since this compromise
is treated as severe, the administrator assigns 100 as its
severity score. And the severity score gets back-propagated
to CVE-2019-17627. We can see that severity scores can
help the administrator evaluate the system-level impact of
each vulnerability, thus prioritizing the fix.

6.4 Scalability

The time and memory complexity of our framework are
shown in Figure[8} From the figure we can see that, in reality,
it only takes around 1.2 seconds and 120MB of memory
to generate the attack graph and perform attack graph
analysis for an IoT system with 50 devices. The CPU time

Xplore. Restrictions apply.

s://www.ieee.orE/Eublications/rights/_inqex.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 11

._.
v
s
S

Time (s)
2
Memory (MB)
g &

2
S

0.4

&
=

0 10 20 30 40 50 0 0 20 30 40 50
devices # devices

(@) (b)
Fig. 8: (a): CPU time vs IoT system size. (b): Memory usage
vs IoT system size.

and memory consumption grow almost linearly with the
number of devices. Our graph analysis algorithms will not
asymptotically increase time complexity on top of the attack
graph generation algorithm because the shortest attack trace
and severity score algorithm only traverse the graph once.
Though the time complexity of the blast radius algorithm is
bounded by the sum of the number of traces to each node,
in practice, this number is at the scale of O(n?) where n is
the number of devices.

7 RELATED WORK

IoT Security. Existing research works on IoT security fo-
cus on different parts of IoT systems. Ding et al. [7] pro-
posed an approach to discover potential physical interac-
tions across applications and generate interaction chains in
an IoT system. Costin et al. [10] conducted a large-scale
static analysis of IoT device firmware and discovered 38
previously unknown vulnerabilities. Sugawara et al. [30]
explored device sensor vulnerability and presented a new
class of audio injection attacks on IoT devices” microphones
by converting the audio signal to laser beams. [13], [14]
explored wireless communication protocol vulnerabilities.
Gu et al. [52] presented an approach to sniff users’ privacy
by analyzing the wireless traffic. [5], [6] focused on uncov-
ering application-level vulnerabilities using model checking
techniques. Though some of the works claim to perform
system-level analysis, they still just consider a subset of the
core IoT components identified by our work, thus having
limited capability in detecting system-level vulnerabilities.
IoT Physical Vulnerabilities. Different from traditional
networked systems, IoT devices’ interaction via the physical
channels brings additional vulnerabilities. Recently, there
are several works on identifying unexpected IoT devices’
physical interaction. IOTMON [7] uses static analysis and
NLP to identify physical channels and detects risky inter-
app interaction chains. IOTSAFE [32] is a run-time safety and
security policy enforcement system, focusing on physical
interaction among IoT devices. IOTSEER [33] combines static
analysis on IoT apps and dynamic analysis with security
policies to detect policy violations due to physical channels.
Since physical interaction depends on devices’ placement
and the environment, dynamic systems can detect IoT phys-
ical dependencies more accurately. However, they did not
consider other IoT vulnerabilities, such as sensors’ firmware
or hardware vulnerability, which may enable the attacker to
bypass the enforcement system. For example, the attacker
can directly compromise the temperature sensor and send
a fake temperature reading while turning on the heater

X . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httgs://www.ieee.or&/gublications/rights/_inqex.html for more information.
Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

to make the room temperature above the threshold. Be-
sides, these frameworks require IoT apps’ source code for
static analysis, while our dependency analyzer only requires
access to IoT devices’ descriptions. Our framework also
identified an important channel, i.e., voice, which are missed
by existing frameworks.

NLP for IoT Security. NLP techniques have been used
in IoT app analysis [7], [26], [31], [43]. Ding et al. [7] utilizes
NLP to extract entity keywords for physical channels from
IoT app descriptions and to cluster these entity keywords
based on their Word2Vec similarities. Tian et al. [43] use NLP
to automatically extract trigger and action information from
apps’ descriptions and annotations. Then they compare the
app semantics with the actual app behavior obtained from
static analysis to detect overprivilege problems in IoT apps.
[26], [31] monitor IoT apps by utilizing NLP to extract IoT
app semantics and comparing it to the actual app behavior
sniffed from the wireless traffic. Though our IoT app anal-
ysis using NLP is similar to those works, to the best of our
knowledge, IOTA is the first framework which applies NLP
techniques to analyzing CVEs and inferring IoT devices’
indirect physical dependencies.

Attack Graphs. Automatic attack graph construction
techniques are critical for system security analysis of net-
worked systems. Sheyner et al. [20] proposed automated
generation of attack graphs based on symbolic model check-
ing. But their framework suffers from the state space ex-
plosion issue, making it difficult to model systems with
hundreds of hosts. [19], [21] utilized the monotonicity as-
sumption to design attack graphs that can be generated
in polynomial time. Ingols et al. [53] present automatic
recommendations to improve system security by identifying
a bottleneck device and patching vulnerabilities to prevent
attackers from accessing the bottleneck. [54], [55] presented
methods to harden computer networks using attack graphs.

8 DISCcUSSION & LIMITATIONS

Manual Effort Required. It has long been a challenge to
evaluate frameworks on IoT system security [5], [51] due
to the lack of real-world IoT dataset. Though there are
thousands of IoT apps available, how users choose apps
and device instances to install is still unknown. To the best
of our knowledge, currently, there is no public dataset of
IoT systems configured by different users. To evaluate our
framework, we designed a top-down approach to generate
synthetic IoT systems based on real-world IoT devices and
apps. In addition, there is no IoT vulnerability dataset we
can use directly to evaluate Vulnerability Analyzer module.
Even though the CVE [37] database contains all the known
vulnerabilities, including IoT vulnerabilities, there are no
preconditions and effects designed specifically for IoT at-
tacks, as shown in Table [8]and Table [9]in Appendix [C} For
example, the CVSS score’s attack vector does not differen-
tiate whether the attackers should be on the Wifi network
(wifi:adjacent_logically), or they just need to be
within Wifi’s radio range (wifi:adjacent_physically).
As a result, we have to manually check the results of
the Vulnerability Scanner, Vulnerability Analyzer, and IoT
Semantic Extractor module. However, these manual efforts
are for evaluation only; once the framework is deployed,
there’s no need to manually check them.

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022

NLP for IoT App Analysis. Even though the con-
stituency parser [40] used in our framework is widely used
in various research fields, including IoT security [7], [26],
[31], [43], it is very sensitive to perturbations — the parse
tree is constructed differently whether there is a comma or
not, even though for humans the semantics are the same.
This can affect the splitting results of the IoT app descrip-
tion sentences. Besides, the performance of matching noun
phrases to device types using Word2Vec cosine similarity
can also be improved. One potential solution is to use device
annotations as additional information. Since the annotations
are in the user interface, the matching still requires no
access to the apps’ source code. Moreover, we can match
noun phrases to device types using different thresholds for
different devices.

9 CONCLUSION

In this work, we design and prototype a novel framework,
I0TA, for automatic, system-level IoT system security anal-
ysis. IOTA takes system configuration and CVE database
as input and generates attack graphs showing all of the
potential attack traces. Our framework further analyzes
the attack graph by computing metrics, viz. the shortest
attack trace, blast radius, and severity score, to help system
administrators evaluate vulnerabilities” impacts. We create
37 synthetic smart home IoT systems based on 532 real-
world IoT apps and 59 smart home devices and utilize
our framework to analyze their security. Evaluation results
show that IOTA is both effective (62.8% of the attack traces
revealed are beyond system designers’ anticipation) and
highly efficient (it takes less than 1.2 seconds to analyze IoT
systems of 50 devices).

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Combat Ca-
pabilities Development Command Army Research Labora-
tory accomplished under Cooperative Agreement Number
WO911NF-13-2-0045 (ARL Cyber Security CRA), the National
Natural Science Foundation of China (No. 62202276), and
the Shandong Science Fund for Excellent Young Scholars
(No. 2022HWYQ-038).

REFERENCES

[1] A Guide to the Internet of Things Infographic, https:
/ /www.intel.com/content/ www /us/en/internet-of-things/
infographics/guide-to-iot.html.

SmartThings, https://smartthings.developer.samsung.com,
Apple HomeKit, https://developer.apple.com/homekit!

Nest, https:/ /developers.google.com/assistant/smarthome /|

D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. . Colbert,
and P. McDaniel, “Iotsan: Fortifying the safety of iot systems,” in
Proceedings of the 14th International Conference on emerging Network-
ing EXperiments and Technologies, 2018, pp. 191-203.

Z.B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 147-158.

W. Ding and H. Hu, “On the safety of iot device physical interac-
tion control,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 832-846.

Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in
Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, 2019, pp. 1439-1453.

Z. Fang, H. Fu, T. Gu, Z. Qian, T. Jaeger, and P. Mohapatra,
“Foresee: A cross-layer vulnerability detection framework for the
internet of things,” in 2019 IEEE 16th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS). IEEE, 2019.

(2]
(3]
(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]
(17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

12

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-
scale analysis of the security of embedded firmwares,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp. 95—
110.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“Firm-afl: high-throughput greybox fuzzing of iot firmware via
augmented process emulation,” in 28th USENIX Security Sympo-
sium (USENIX Security 19), 2019.

A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation,” in 20th Network &
Distributed System Security Symposium (NDSS), 2013.

E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2017, pp. 195-212.

E. Y. Vasserman and N. Hopper, “Vampire attacks: draining life
from wireless ad hoc sensor networks,” IEEE transactions on mobile
computing, vol. 12, no. 2, pp. 318-332, 2011.

R. Trimananda, S. A. H. Aqajari,]. Chuang, B. Demsky, G. H. Xu,
and S. Lu, “Understanding and automatically detecting conflicting
interactions between smart home iot applications,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2020, pp. 1215-1227.

https:/ /nvd.nist.gov/vuln/detail /CVE-2019-17627.

https:/ /nvd.nist.gov/vuln/detail /CVE-2019-5035,

Alexa Skill, https://www.amazon.com/Amazon-Key/dp/
B075LY9H6H.

X. Ou, W. E Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM conference
on Computer and communications security, 2006, pp. 336-345.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and]J. M. Wing, “Au-
tomated generation and analysis of attack graphs,” in Proceedings
2002 IEEE Symposium on Security and Privacy. 1EEE, 2002, pp.
273-284.

P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, 2002.

R. W. Ritchey and P. Ammann, “Using model checking to analyze
network vulnerabilities,” in Proceeding 2000 IEEE Symposium on
Security and Privacy. S&P 2000. IEEE, 2000, pp. 156-165.
Vulnerability Scanning Tools, https:/ /owasp.org/
www-community / Vulnerability_Scanning_Tools|

X. Ou, S. Govindavajhala, A. W. Appel et al., “Mulval: A logic-
based network security analyzer.” in USENIX security symposium,
vol. 8. Baltimore, MD, 2005, pp. 113-128.

IFTTT SmartThings Applets, https://ifttt.com/smartthings.

T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra,
“Iotgaze: Iot security enforcement via wireless context analysis,”
in IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions. 1EEE, 2020.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic
firmware analysis at scale: a case study on embedded web in-
terfaces,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, 2016, pp. 437—-448.

G. Hernandez, F. Fowze, D. Tian, T. Yavuz, and K. R. Butler,
“Firmusb: Vetting usb device firmware using domain informed
symbolic execution,” in Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, 2017, pp. 2245-
2262.

Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi,
and Y. Kim, “Rocking drones with intentional sound noise on
gyroscopic sensors,” in 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 881-896.

T. Sugawara, B. Cyr, S. Rampazzi, D. Genkin, and K. Fu,
“Light commands: Laser-based audio injection attacks on voice-
controllable systems,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2631-2648.

W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“Homonit: Monitoring smart home apps from encrypted traffic,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1074-1088.

W. Ding, H. Hu, and L. Cheng, “Iotsafe: Enforcing safety and
security policy with real iot physical interaction discovery,” in
the 28th Network and Distributed System Security Symposium (NDSS
2021), 2021.

M. O. Ozmen, X. Li, A. Chu, Z. B. Celik, B. Hoxha, and
X. Zhang, “Discovering iot physical channel vulnerabilities,” in

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt s://www.ieee.orE/Eublications/rights/_inqex.html for more information.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

Xplore. Restrictions apply.

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://smartthings.developer.samsung.com
https://developer.apple.com/homekit
https://developers.google.com/assistant/smarthome/
https://nvd.nist.gov/vuln/detail/CVE-2019-17627
https://nvd.nist.gov/vuln/detail/CVE-2019-5035
https://www.amazon.com/Amazon-Key/dp/B075LY9H6H
https://www.amazon.com/Amazon-Key/dp/B075LY9H6H
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://ifttt.com/smartthings

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3231567

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, DECEMBER 2022 13

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]
(48]
[49]

[50]
[51]

[52]

[53]

[54]

[55]

ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022.

Common Vulnerability Scoring System (CVSS), https://www.
first.org/cvss/.

E. Pendergrass, “Cheap, hackable iot light bulbs (or, philips
bulbs have no security),” https://blog.dammitly.net/2019/10/
cheap-hackable-wifi-light-bulbs-or-iot.html,

No Authentication Vulnerability in Radio Thermostat, https:
/ /www.trustwave.com/en-us/resources/security-resources,/
security-advisories /?fid=18874/

Common Vulnerabilities and Exposures, https:/ /cve.mitre.org/.
National Vulnerability Database (NVD), https://nvd.nist.gov/|
Google Assistant, |https://developers.google.com/assistant/
smarthome/guides!

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations (ACL), 2014.

S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. 7 O'Reilly
Media, Inc.”, 2009.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” Advances in neural information processing systems,
vol. 26, 2013.

Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and
P. Tague, “Smartauth: User-centered authorization for the internet
of things,” in 26th USENIX Security Symposium (USENIX Security
17), 2017, pp. 361-378.

Forum of Incident Response and Security Teams, Inc., “CVSS
Scoring Rubrics,” https:/ /www.first.org/cvss/user-guide#
Scoring-Rubrics,

Common Weakness Enumeration (CWE), https://cwe.mitre.org/,
L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An
attack graph-based probabilistic security metric,” in IFIP Annual
Conference on Data and Applications Security and Privacy, 2008.
SmartThings Public GitHub Repo, |https://github.com/
SmartThingsCommunity /SmartThingsPublic,

IFTTT Smart Home Applets, https://ifttt.com/search/query/
smart%20home?tab=applets.

SmartThings Products List, |https://www.smartthings.com/
products-list.

SmartThings Partners, https:/ /www.smartthings.com/partners,
M. Alhanahnah, C. Stevens, and H. Bagheri, “Scalable analysis of
interaction threats in iot systems,” in Proceedings of the 29th ACM
SIGSOFT international symposium on software testing and analysis,
2020, pp. 272-285.

T. Gu, Z. Fang, A. Abhishek, and P. Mohapatra, “Iotspy: Uncover-
ing human privacy leakage in iot networks via mining wireless
context,” in 2020 IEEE 31st Annual International Symposium on
Personal, Indoor and Mobile Radio Communications. 1EEE, 2020.

K. Ingols, R. Lippmann, and K. Piwowarski, “Practical attack
graph generation for network defense,” in 2006 22nd Annual
Computer Security Applications Conference (ACSAC’06). 1EEE, 2006,
pp. 121-130.

M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-
effective network hardening using attack graphs,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1-12.

K. Durkota, V. Lisy, B. Bosansky, and C. Kiekintveld, “Optimal
network security hardening using attack graph games,” in Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

Zheng Fang received his B.Eng. and M.S. de-
gree from Huazhong University of Science and
Technology, and Columbia University, respec-
tively. He received his Ph.D. degree in Computer
Science at University of California, Davis. His re-
search interests include internet of things (loT),
security, and program analysis. He published pa-
pers in INFOCOM, IoTDI, and MASS, etc. He
served as a reviewer for ICDCS, IEEE Internet
of Things Journal, and IEEE Transactions on
Wireless Communications, etc.

Hao Fu received his Ph.D. in Computer Science
from the University of California, Davis, USA, in
2019. He was supervised by Dr. Prasant Mo-
hapatra. His research interests include network
and systems security, machine learning, and
program analysis. He published more than 10
papers in relevant reputed conferences, includ-
ing INFOCOM, SECON, CoNext, MILCOM, etc.
He was also a reviewer of CCS, CNS, ACNS,
MILCOM, etc.

Tianbo Gu received the B.S. degree from
Hangzhou Dianzi University, China, in 2010, and
the M.S. degree from University of Science and
Technology of China, in 2013. In 2012, he re-
ceived National Scholarship which is the top
award for graduate students in China. He got his
Ph.D. degree in Computer Science at University
of California, Davis in 2020. His research inter-
ests include Internet of Things, edge computing,
and smart sensing.

Pengfei Hu is a professor in School of Computer
Science and Technology at Shandong Univer-
sity, China. He received Ph.D. in Computer Sci-
ence from UC Davis. His research interests are
in the areas of loT security, Al security, mobile
computing. He has published over 30 papers in
premier conferences and journals on these top-
ics, e.g. [EEE S&P, ACM CCS, IEEE INFOCOM,
IEEE TMC, etc. He also served as TPC for nu-
merous prestigious conferences and associate
editors for IEEE TWC and loTJ.

Jinyue Song received his B.S. degree from Mc-
Master University, Canada in 2017 and his M.S.
degree from the University of San Francisco in
2019. He is pursuing a Ph.D. degree at the Uni-
versity of California, Davis, supervised by Pro-
fessor Prasant Mohapatra. His research inter-
ests cover network security, mmWave commu-
nication in vehicular networks, edge computing,
and blockchain.

Trent Jaeger received the M.S. and Ph.D. de-
grees in computer science and engineering from
the University of Michigan, Ann Arbor, in 1993
and 1997, respectively, and spent nine years at
IBM Research prior to joining Penn State. He is a
Professor with the Computer Science and Engi-
neering Department, Pennsylvania State Univer-
sity, where he is the Co-Director of the Systems
and Internet Infrastructure Security Laboratory.
He has published over 100 refereed papers on
these topics and the book Operating Systems
Security, which examines the principles behind secure operating sys-
tems designs. He has made a variety of contributions to open source
systems security, particularly to the Linux Security Modules framework,
SELinux, integrity measurement in Linux, and the Xen security architec-
ture. His research interests include systems security and the application
of programming language techniques to improve security. He was the
Chair of the ACM Special Interest Group on Security, Audit, and Control.

Prasant Mohapatra is serving as the Vice
Chancellor for Research at University of Califor-
nia, Davis. He is also a Professor in the Depart-
ment of Computer Science and served as the
Dean and Vice-Provost of Graduate Studies at
University of California, Davis during 2016-18.
He was the editor-in-chief of the IEEE Trans-
actions on Mobile Computing. He has served
on the editorial boards of the IEEE Transactions
on Computers, the IEEE Transactions on Mobile
Computing, the IEEE Transaction on Parallel and
Distributed Systems, the ACM Journal on Wireless Networks, and Ad
Hoc Networks. He is a fellow of the IEEE and a fellow of the AAAS.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt s://www.ieee.org/gublications/rights/_inqex.html for more information.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on April 24,2023 at 16:02:40 UTC from IE

Xplore. Restrictions apply.

https://www.first.org/cvss/
https://www.first.org/cvss/
https://blog.dammitly.net/2019/10/cheap-hackable-wifi-light-bulbs-or-iot.html
https://blog.dammitly.net/2019/10/cheap-hackable-wifi-light-bulbs-or-iot.html
https://www.trustwave.com/en-us/resources/security-resources/security-advisories/?fid=18874
https://www.trustwave.com/en-us/resources/security-resources/security-advisories/?fid=18874
https://www.trustwave.com/en-us/resources/security-resources/security-advisories/?fid=18874
https://cve.mitre.org/
https://nvd.nist.gov/
https://developers.google.com/assistant/smarthome/guides
https://developers.google.com/assistant/smarthome/guides
https://www.first.org/cvss/user-guide#Scoring-Rubrics
https://www.first.org/cvss/user-guide#Scoring-Rubrics
https://cwe.mitre.org/
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://ifttt.com/search/query/smart%20home?tab=applets
https://ifttt.com/search/query/smart%20home?tab=applets
https://www.smartthings.com/products-list
https://www.smartthings.com/products-list
https://www.smartthings.com/partners

	Introduction
	Threat Model
	Device
	Network
	IoT application
	Physical channel

	System Overview
	Iota Design
	Vulnerability Scanner
	Dependency Analyzer
	App Semantic Extractor
	Vulnerability Analyzer
	Attack Graph Generator
	Attack Graph Analyzer

	Implementation
	Evaluation
	Dataset
	Results
	Case Study
	Scalability

	Related work
	Discussion & Limitations
	Conclusion
	References
	Biographies
	Zheng Fang
	Hao Fu
	Tianbo Gu
	Pengfei Hu
	Jinyue Song
	Trent Jaeger
	Prasant Mohapatra

	Appendix A: Listing
	Appendix B: Algorithm
	Appendix C: Table

