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Abstract—Recent works demonstrated that we can eavesdrop
on audio by using radio frequency signals or videos to capture
the physical surface vibrations of surrounding objects. They
fall short when it comes to intercepting internally transmitted
audio through wires. In this work, we first address this gap
by proposing a new eavesdropping system, RF-Parrot, that can
wirelessly capture the audio signal transmitted in earphone wires.
Our system involves embedding a tiny field-effect transistor in
the wire to create a battery-free retroreflector, with its reflective
efficiency tied to the audio signal’s amplitude. To capture full
details of the analog audio signals, we engineered a novel retrore-
flector using a depletion-mode MOSFET, which can be activated
by any voltage of the audio signals, ensuring no information
loss. We also developed a theoretical model to demystify the
nonlinear transmission of the retroreflector, identifying it as
a convolution operation on the audio spectrum. Subsequently,
we have designed a novel convolutional neural network-based
model to accurately reconstruct the original audio. Our extensive
experimental results demonstrate that the reconstructed audio
bears a strong resemblance to the original audio, achieving an
impressive 95% accuracy in speech command recognition.

Index Terms—Audio eavesdropping, active retroreflector at-
tack, RF side-channel attack.

I. INTRODUCTION
Audio eavesdropping has long been a subject of interest

in security and privacy research. Recent advancements have
demonstrated the interception of audio signals wirelessly
by capturing the physical surface vibrations of surrounding
objects using RF signals [1]–[6], laser [7], and videos [8].
However, these methods have a significant limitation: they are
incapable of intercepting audio signals transmitted internally
through wires, such as those in earphones and telephone lines.
This gap in capability presents considerable potential security
issues, as wired audio transmissions are prevalent in numerous
practical scenarios, from personal earphone use to professional
audio systems. Moreover, most audio signals in earphone
wires are not encrypted, and eavesdropping can result in more
serious privacy breaches.

A naive solution to eavesdrop on the earphone is to perform
classic electromagnetic side-channel attacks [9]–[11], which
passively measure the electromagnetic emission from the tar-
get devices. Then, the attacker can reconstruct the original
signal by analyzing the measured radio wave. However, the
EM emission from the audio wire or speaker coils is too weak
to be detected remotely. The advanced earphone eavesdropping
system can only work within 50 cm [10]. Recently, there have
been some studies [12]–[14] on active radio-frequency retrore-
flector attacks (RFRA) to eavesdrop on wired digital signals

*Pengfei Hu is the corresponding author.

(a) Existing RFRA for eavesdropping on the digital signal

“H e l l o”

01010101...

Retroreflector
E-MOSFET

Retroreflector
D-MOSFET

Password 
5 4 8 6 3

Tx

Rx
SDR

recover

5 4 8 6 3

(b) RF-Parrot used for eavesdropping on wired analog audio

recognize

wall

recognize

Keystrokes
“H e l l o”

Tx

Rx
SDR

01010101...

0 0 0 0 0

1 1 1 1

0

0

0 0 0 0 0

1 1 1 1

Fig. 1. RFRA: (a) existing RFRA digital keyboard attack, (b) wired analog
audio eavesdropping using our RF-Parrot

remotely. RFRA involves a retroreflector secretly embedded
inside the target device, which reflects the incoming RF signal
emitted by the attacker back to an RF signal receiver for
interception [13]. The reflective efficiency of the retroreflector
varies as the digital signal switches between high and low
voltages. For example, researchers [15] demonstrated that we
could implant a tiny metal-oxide-semiconductor field-effect
transistor (MOSFET) into the keyboard wire and employ the
commodity software-defined radio (SDR) to remotely eaves-
drop on the kicked keystroke via the backscattered RF signals
from MOSFET, as depicted in Fig. 1(a). However, existing
RFRA systems can only eavesdrop on digital signals but can
not deal with analog signals (i.e., audio signals).

In this work, we ask - Can we eavesdrop on the wired
analog audio signal wirelessly? Particularly, as shown in
Fig. 1(b), we aim to perform RFRA eavesdropping on analog
audio signals at a long range and through the wall via only
embedding a tiny transistor (i.e., diameter <3 mm) inside the
earphone wire. Such a secret bug overwhelms microphone-
based and coil-based tapping devices with a covert design and
longer eavesdropping distance. Yet, it is a daunting task to
answer the above question. First, recovering every detail of
the analog signal, meanwhile bothered by noises, is much
more difficult than simply retrieving either ’0’ or ’1’ in
digital signals. Second, unlike the digital signal, almost half
of the analog audio signal is negative, containing essential
information. Regarding the above problems, we propose the
first-of-its-kind analog RFRA system, named RF-PARROT,
by re-designing the retroreflector to fit the analog require-
ments in audio eavesdropping. We carefully select the RF
signal frequency for through-wall RFRA audio eavesdropping



and develop advanced signal processing algorithms for high-
quality audio recovery and speech command recognition.

As a pioneer attempt, RF-PARROT addresses the funda-
mental challenge of RFRA on the analog audio signal by
utilizing the depletion-mode MOSFET (i.e., D-MOSFET)
as the retroreflector. Previous RFRA works all employ the
enhancement-mode MOSFET (E-MOSFET), which requires
a positive voltage on the gate for RF signal radiation [12],
[13], [15]; thus, they fail to capture the negative part in audio
signals, leading to much information loss. On the contrary, the
D-MOSFET can be turned on by both negatively and positively
charged gate, offering the potential for audio eavesdropping.
On top of such a principle, we fabricate a tiny retroreflector
using the D-MOSFET as a covert listening device that can
be hidden in the audio wire. The retroreflector functions as
an analog modulator over the remotely transmitted RF signal.
As such, the audio signal’s voltage change directly affects the
strength of radiated RF wave back to the signal receiver; thus,
the audio information can be revealed from the received RF
signal amplitude. Our analytical and experimental results show
that the D-MOSFET-based retroreflector is more effective in
reserving the key information in analog audio signals than
the E-MOSFET. Attackers can secretly substitute the audio
wire with the one embedded with our designed tiny bug for
eavesdropping without being noticed.

Despite the promising feature of the D-MOSFET, it still
leaves detrimental effects on precisely recovering the original
audio signal. First, the transfer characteristic curve of D-
MOSFETs is nonlinear, resulting in the captured RF signal be-
ing a distorted version of the original audio signal. Particularly,
by investigating the effect of the D-MOSFET’s transfer curve
on the audio signal, we find that the nonlinear transfer curve
causes unbalanced and flipped RF signal amplitudes between
the negative and positive parts of the analog audio signal.
Such imbalance and deformation lead to a serious attenuation
and distortion of the eavesdropped audio signal, impeding the
successful reconstruction of the original audio.

To tackle the nonlinearity issue caused by the D-MOSFET,
we mathematically model the effect of the nonlinear transfer
curve on the received RF signal amplitude. We find that the
nonlinear transformation is essentially a convolution operation
on the spectrum of the original audio. Based on this key
finding, we intuitively aim to reconstruct the audio by deriving
an analytical solution to reverse the convolution operation.
However, the above convolution computation highly depends
on the audio signal in various forms. Besides, the nonlinearity
parameters are also unknown to us. Thus, it is extremely
difficult to obtain the desired solution. To this end, we propose
to harness the convolutional neural network (CNN), which
not only provides the required convolution operation but also
can adapt to various audio signals automatically. As such, we
devise an encoder-decoder neural network with convolution
layers for audio reconstruction. We further introduce the
attention mechanism and dedicatedly design a loss function
for the network to remove the effect of RF signal noises and
achieve better reconstruction performance.

In summary, our work makes the following contributions:
• We propose the first analog RFRA system, RF-Parrot, for

eavesdropping on the wire-transmitted analog audio signal
remotely via a new design of the retroreflector made from
the D-MOSFET.

• We demonstrate that RF-PARROT can intercept analog audio
signals at a distance of 1 m through the wall. We also devise
a novel method to tackle the audio deformation problem
incurred by the nonlinear transfer curve of D-MOSFET.

• We evaluate RF-Parrot using over 65,000 speech com-
mands from thousands of people in various environments.
Extensive experiments show we can achieve an average
mel-cepstral distortion (MCD) of 6.81, signal-to-noise ratio
(SNR) of 4.7, and 95% command recognition accuracy.

II. ANALOG AUDIO EAVESDROPPING VIA RFRA:
CONCEPT & PRELIMINARIES

This section introduces the attack model, the concept of
RFRA, the principle of RFRA for the analog audio signal,
feasibility studies, and preliminary results.
A. Attack Model

The attacker aims to eavesdrop on the wire-transmitted
audio signal in the target device via the backscattered RF
signal from the retroreflector embedded in the wire, as shown
in Fig. 1(b). We make the following assumptions for RF-
Parrot attacks. First, we assume the attacker can secretly
replace the victim’s audio wire with the one embedded with
a tiny retroreflector sealed inside. Since the MOSFET-based
retroreflector is commonly within 3 mm and does not actively
emit signals, such a replacement would not be noticed by
victims. Second, there is acoustic isolation, e.g., soundproof
insulation or wall, between the attacker and the victim so that
the attack can be conducted out of the victim’s sight. Third, the
attacker has no prior information about the content of the audio
emitted from the victim. Finally, the SDR and antennas used
for eavesdropping are commercially affordable and portable
for the attacker. The cost to reproduce the audio wire with a
retroreflector embedded is also within tens of US dollars.
B. Traditional RFRA on Digital Signal

RFRA conducts attacks by embedding a battery-free retrore-
flector into the data transmission wire of the target device.
Existing works mainly employ the E-MOSFET as the retrore-
flector for digital RFRA. As shown in Fig. 2(a), the MOSFET
gate (G) is connected to the wire’s signal line, and the drain
(D) and source (S) are tied to the GND line. The high and low
levels of the digital signal vary the gate voltage VGS . From
the transfer characteristic curve2 of E-MOSFET in Fig. 2(b),
the high VGS > 0 incurs a higher current Ih on the drain than
that of the low VGS = 0, i.e., Il. When the remote attacker
sends the RF signal to the retroreflector, the GND line aside
the drain and source works like a dipole antenna which can
reflect the RF signal back to the attacker’s RF receiver. As

1MCD below 8 indicates a high-fidelity of audio reconstruction.
2The transfer characteristic curve refers to the drain current vs. gate to

source voltage curve.
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such, the received RF signal has a higher amplitude due to
Ih, whereas the amplitude decreases to zero for Il. In sum,
the radiated RF wave is AM-modulated by the digital signal
transmitted via the wire. By demodulating the received RF
signal, we can recover the original digital information from
the low- and high-level RF signal amplitude.
C. A New Design of RFRA on Analog Audio Signal

RFRA becomes much more complicated when transmitting
analog audio signals. First, different from the digital signal,
analog audio contains negative voltages. However, the cutoff
voltage Vc of E-MOSFET is positive, resulting in zero am-
plitude of the received RF signal for the negative part of the
audio. As such, the audio signal below the cutoff voltage is
completely lost. Second, compared with the binary ’1’ or ’0’,
the analog audio signal is continuous over time and can take
any value within a certain range. It is intractable to precisely
reconstruct every detail of the analog audio signal via RFRA
in the face of signal noise and attenuation in the air.

The root cause of the information loss using the E-MOSFET
stems from the inappropriate transfer curve for eavesdropping
on the analog audio signal. To tackle this issue, we devise
a new retroreflector using the D-MOSFET whose transfer
curve is depicted in Fig. 3. D-MOSFET owns a preferable
characteristic for RFRA on the analog audio signal, i.e., the
negative cutoff voltage Vc. Then, ID can also be flexibly
controlled by both negative and positive parts of the audio
signal, making the received RF signal amplitude continuously
change with the audio voltage. Thus, we have the potential to
restore the original audio signal by employing the D-MOSFET.

To understand the principle of using D-MOSFET for analog
audio eavesdropping, we carefully debunk the transfer curve
of the D-MOSFET and model its effect on the backscattered
RF signal’s amplitude from the audio wire. First, we divide
the transfer curve in Fig. 3 into three parts based on the gate
voltage VGS : VGS ≥ 0, Vc ≤ VGS < 0, and VGS < Vc.

• When VGS ≥ 0, ID varies with the VGS in an approx-
imately linear way within the audio voltage. Thus, the
received RF signal amplitude a(t) proportionally changes
with the audio signal voltage s(t), i.e., a(t) = α·s(t)+β.

• When Vc ≤ VGS < 0, ID nonlinearly changes with the
VGS . The reflected RF signal amplitude a(t) will experi-
ence a nonlinear decay of the original audio signal s(t).
The nonlinearity in MOSFET is generally represented
by a pseudo-exponential function [16], and the decay
magnitude is controlled by the audio signal itself, making
the received signal amplitude3 as a(t) = −eγ·s(t) · s(t).

3The negative sign ’-’ is introduced to make a(t) positive as ID is positive.
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• When VGS < Vc, there is no current on the drain; thus
the reflected RF signal amplitude a(t) = 0. Note that
the cutoff voltages of common D-MOSFETs are below
-1 V, which is sufficient to react to the wire-transmitted
audio signal voltage falling within the low voltage range
of hundreds of millivolts [17].

Summarizing the above modeling, we can represent the effect
of the audio signal s(t) on the received RF signal amplitude
a(t) with the following equation.

a(t) =


α · s(t) + β, s(t) ≥ 0

−eγ·s(t) · s(t), Vc ≤ s(t) < 0

0, s(t) < Vc

(1)

The parameters α, β, and γ in Eq. (1) are constant values,
which are determined by the D-MOSFET.

To validate the modeling result, we transmit a single-
tone analog audio signal via a coaxial wire in which a D-
MOSFET retroreflector is embedded inside (see details in
Section III-B) and apply Eq. (1) to simulate the received
RF signal amplitude4 and compare it with the real collected
signal from an SDR, as depicted in Fig. 4. We have the
following observations from Fig. 4: (i) The simulated signal
amplitude in Fig. 4(b) and the collected one in Fig. 4(c) exhibit
similar patterns, verifying the effectiveness of our modeling
result. (ii) The main periodicity of the single-tone audio is
maintained; particularly, the positive part of the audio is
well preserved. However, due to the nonlinear decay between
[Vc, 0), the negative part of the single-tone audio flips over
with smaller amplitudes. Besides, the weaker strength also
causes the negative part to suffer more from noise fluctuations.
(iii) The peak in the simulated amplitude becomes flat in the
collected RF signal amplitude. Such a breach is caused by
the upper limit of the induced current imax provided by the
RF transmitter. Once ID exceeds imax, the received RF signal
amplitude will stay at the maximum. This issue can be fixed by
increasing the RF transmitter gain. Another concern is whether
the retroreflector affects the normal audio transmission. We
employ the total harmonic distortion (THD) to quantify the
audio distortion introduced by the retroreflector. The average
THD of human speech transmitted in three common audio
wires are all below -20dB, meaning less than 1% distortion.

In sum, using the D-MOSFET-based retroreflector can cap-
ture the information in both negative and positive parts of
the audio signal without disturbing normal audio transmission,
which is beneficial for successful eavesdropping. However,

4In this simulation, α, β, and γ are all set to 1.
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TABLE I
MCD OF EAVESDROPPED SIGNAL BY D-MOSFET AND E-MOSFET

0 1 2 3 4 5 6 7 8 9
D-MOS 16.9 17.0 16.8 17.7 17.0 17.4 17.7 18.4 16.2 18.5

E-MOS 20.6 23.4 23.9 22.9 22.3 22.6 22.1 24.2 25.9 25.4

the nonlinearity in the D-MOSFET transfer curve and unpre-
dictable RF noises result in the detrimental transformation of
the original audio. In Section III-E, we propose solutions to
address the nonlinearity and noise issues.

D. Feasibility Study and Analysis

We conduct preliminary experiments to show the feasibility
of using the D-MOSFET for analog audio eavesdropping.
First, we use a smartphone to play the English speech audio
of 10 digits from 0 to 9 spoken by six persons. The D-
MOSFET is assembled on a tiny PCB and embedded in the
middle of 1 m-long wire which is connected to the phone audio
jack. Then, we emit the RF signal from an SDR and collect
the reflected signal using a pair of directional antennas. The
received RF signal amplitude is saved as a wave file. Then, we
quantitatively evaluate the similarity between the original au-
dio and the received RF signal by calculating the mel-cepstral
distortion (MCD) which measures the difference between the
eavesdropped and the original speech. Meanwhile, we also
obtain the MCDs using an E-MOSFET for comparison. Note
that a smaller MCD value indicates better audio eavesdropping
performance. As given in Table I, the average MCD of D-
MOSFET over 0 to 9 digits is around 6-7 less than that of the
E-MOSFET, demonstrating that D-MOSFET is more effective
in reconstructing the analog audio signal. On the other hand,
we still need to tackle the nonlinearity problem to lower the
MCD within 8, under which the eavesdropped audio can be
recognized by the speech recognition system [18]. We also
listen to the eavesdropped wave files: most stressed syllables
can be perceived but mixed with background noises; besides,
the light plosive sounds are distorted. Thus, the eavesdropped
audio needs further enhancement and reconstruction.

Next, we calculate and observe the mel-spectrograms of
the original and eavesdropped audio signals involving several
typical speech commands (e.g. ’go’, ’stop’, ’up’, ’down’, ’left’,
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’right’) in Fig. 5. First, we compare the similarity between
the original audio’s mel-spectrogram and that of the received
RF signal amplitude for each command. The main frequency
components in the original audio can be generally preserved in
the eavesdropped signal, as shown in the boxed areas of each
command’s mel-spectrograms in Fig. 5. Second, we compare
the eavesdropped signal’s spectrogram of different commands.
As depicted in the second row’s figures of Fig. 5, the six
commands illustrate a significant difference among their eaves-
dropped mel-spectrograms, indicating that the eavesdropped
signals of different speech audios are distinguishable.

According to the above preliminary results, the D-MOSFET
retroreflector demonstrates great potential in eavesdropping
on the wire-transmitted analog audio signal; meanwhile, the
eavesdropped signal can be used to recognize different speech
commands. However, we also observe that the eavesdropped
signal’s mel-spectrograms are blurred and noisy compared
with those of the original audio. The key frequency com-
ponents in the audio become less dominant in strength due
to the presence of other disturbing and noisy frequencies.
This may arise from the nonlinear effect of the transfer
curve, as the negative part of the audio signal is flipped
over, which introduces high-frequency components in the mel-
spectrogram. We will tackle this problem in Section III-E.

III. RF-PARROT SYSTEM DESIGN

In this section, we introduce the design details of RF-
PARROT, including the fabrication of the retroreflector, RF
signal setup, signal pro-processing, and audio reconstruction.
A. Overview of RF-PARROT

The system overview of RF-PARROT is shown in Fig. 6,
which contains five key modules. In the first module, the
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D-MOSFET-based retroreflector is fabricated and embedded
into the audio wire. Second, in the RF signal emission and
receiving module, we carefully select a proper RF signal
frequency for effectively receiving the backscattered signal
from the audio wire. Third, the signal pre-processing module
removes noises and redundancy in the received RF signal
and obtains the corresponding mel-spectrogram. Fourth, in the
audio reconstruction module, we develop an encoder-decoder
network with convolutional layers to tackle the nonlinear effect
on the eavesdropped signal’s mel-spectrogram which is then
converted back to the audio signal. Finally, we input the re-
constructed signal’s mel-spectrogram into a speech command
recognition model to automatically obtain the speech content.

B. Fabrication of D-MOSFET-based Retroreflector

The circuit diagram of the retroreflector is depicted in Fig.
7(a). It consists of two main components, i.e., a N-channel D-
MOSFET and a 10KΩ resistor. The resistor is used to protect
the MOSFET from being destroyed by the overcurrent. The
gate of the D-MOSFET is connected to the inner conductor
of the audio wire which carries the analog signal. The drain
and source are connected to the metallic shield (i.e., the GND)
on each side of the wire after being split, respectively. In our
implementation, the D-MOSFET and resistor are assembled on
a tiny PCB in Fig. 7(b) for the convenience of welding. Note
that the size of the retroreflector can be further reduced by
directly embedding the D-MOSFET and resistor into the audio
wire. Particularly, the size of D-MOSFET is usually within
3 mm-long, which is smaller than the diameters of common
audio wires (3 mm-5 mm) [19]. Thus, the retroreflector can
be installed inside the audio wire without being noticed.

C. RF Signal Emission and Receiving

As shown in Fig. 2(a), the audio wire on each side of the
retroreflector naturally acts as a dipole antenna. To obtain a
stronger RF signal backscattered from the dipole antenna, we
carefully tune the RF signal to work on the resonant frequency
of the dipole antenna. For the audio wire with a length of L,
the dipole antenna would resonate at the odd multiples of half-
wavelength for the RF signal [20], [21], i.e., L = (2n−1)·λ/2,
where n ∈ N+. Then, the candidate resonance frequency fr
can be expressed as follows:

fr =
1

2
· (2n− 1) · c/L,

where c is the light speed of 3 × 108 m/s. Common audio
wires are around 1 m-long, i.e., L = 1 m. Thus, fr can be
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any odd multiple of 150 MHz. However, considering that the
attacker can be more easily detected by the defense side if
emitting the signal at an uncommon frequency, we select the
fr around the 2.4 GHz, which is the most broadly utilized
frequency band. As such, the signal emitted by the attacker can
be drowned out in the congested 2.4 GHz spectrum, decreasing
the attacker’s risk of being identified. The nearest resonant
frequency to 2.4 GHz is 2.25 GHz = 150 MHz × 15, i.e., fr =
2.25 GHz. Moreover, the RF signal at this frequency is capable
of penetrating through the wall. Thus, we send out a 2.25 GHz
continuous wave from the transmitting antenna on the SDR,
which is then reflected by the audio wire and received by the
receiving antenna with a sampling rate of 200 KHz. Finally,
we save the received signal amplitude into a wave file.

D. RF Signal Pre-processing

The received RF signal amplitude undergoes the following
pre-processing steps. First, we apply a low-pass filter to
eliminate high-frequency RF noise from the signal. The cut-
off frequency is set to 8 KHz since the usable voice frequency
band in telephony is basically below 4 KHz [22]. According
to the Nyquist sampling theorem, a sampling rate of 8 KHz
is necessary to adequately represent the voice frequency band.
Then, we remove the DC component from the signal to prevent
the voice frequencies from being masked by the DC offset.
Next, we re-sample the signal at a reduced sampling rate of
8 KHz to minimize the computation and storage demands in
subsequent stages. Finally, we divide the signal into fixed-
length segments, each containing a single word, and calculate
the mel-spectrogram of each segment.

E. Audio Reconstruction

Recall that the nonlinear transfer curve of D-MOSFETs
in the negative voltage range incurs the deformation of
the original audio signal. Such deformation leads to extra
frequency components in the spectrum of the received RF
signal. For instance, we compare the spectrum of the original
0.4 KHz single-tone audio signal with that of the eavesdropped
RF signal using a D-MOSFET-based retroreflector in Fig.
8. Apart from the original 0.4 KHz frequency component,
the spectrum of the eavesdropped RF signal also contains
additional 0.8 KHz and 1.6 KHz components, which could
result in inaccurate perceiving of the audio content. To solve
this problem, we first derive the underlying mathematical
mechanism of the nonlinear effect on the eavesdropped signal.
Then, we propose an audio reconstruction model to tackle the
nonlinearity issue.
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1) Mathematical modeling of the nonlinear effect: We
perform fast Fourier transformation (FFT) on the received RF
signal amplitude a(t) based on Eq. (1). Suppose the FFT of
the original audio signal s(t) is S(f). When s(t) ≥ 0, we
can express the FFT of a(t) = α · s(t) + β as A(f) =
α ·S(f)+β · δ(f) according to the linearity property of FFT;
thus the audio fidelity is preserved for the positive part of
the audio signal. However, when Vc ≤ s(t) < 0, the FFT
of a(t) = −eγ·s(t) · s(t) becomes complicated. To solve this
problem, we first decompose a(t) as the product of two parts:

a1(t) = −eγ·s(t), a2(t) = s(t), a(t) = a1(t) · a2(t)

Based on the convolution theorem, A(f) can be expressed as:

A(f) = F{a1(t) · a2(t)}
= A1(f) ∗A2(f) = A1(f) ∗ S(f)

To losslessly recover S(f) out of A(f), we need to find
A−1

1 (f), in which A−1
1 (f) ∗ A1(f) = δ(f), where δ(f) is

the FFT of the constant signal 1. Then, we can conduct
convolution between A−1

1 (f) and A(f) as below.

A−1
1 (f)∗A(f) = A−1

1 (f)∗A1(f)∗S(f) = δ(f)∗S(f) = S(f) (2)

By performing inverse FFT on A−1
1 (f) ∗ A(f), i.e., S(f),

we can restore the original audio signal s(t). However, it is
extremely difficult to deterministically obtain A−1

1 (f) due to
the following two reasons. First, A−1

1 (f) is decided by the
audio signal s(t). In consideration of various speech signals in
practice, we can hardly find the analytical expression of s(t),
let alone the further complex exponential function, FFT, and
convolution related to s(t). Second, the decay factor γ in a1(t)
is unknown to us. Although one can collect multiple traces of
the RF signal in advance to fit γ, it is quite a labor-intensive
process. Meanwhile, the fitting result could be error-prone due
to signal noise. Therefore, an alternative solution is required.

2) Audio reconstruction via convolutional neural network:
The operation in Eq. (2) is essentially a convolutional process.
Instead of explicitly deriving the A−1

1 (f), we may employ the
CNN with convolutional layers as the core to accomplish the
above computation task. In addition to the required convolu-
tion operation, neural networks are also good at automatically
adapting to various speech signals and resisting signal noise.

In specific, we take the mel-spectrogram of the eaves-
dropped RF signal amplitude as the input. Our goal is to
build a model for converting the nonlinearly deformed mel-
spectrogram to its original version. To reach this goal, we

adopt the encoder-decoder model, which is widely applied
for translation purposes [23]–[25], to “translate” the deformed
mel-spectrogram. Thus, we select U-Net, a classical encoder-
decoder convolutional network [26], for audio reconstruction.

Directly employing the U-Net network may not be able to
recover the original audio mel-spectrogram well due to the
disturbing RF signal noises in the silent period within the
received signal. As shown in Fig. 5, the darker areas in the
mel-spectrogram are mainly incurred by the inevitable noises
in the RF transceiver, which is not helpful in training the re-
construction network. Thus, we make two main improvements
on U-Net to achieve better reconstruction performance. First,
inspired by the attention mechanism which has the ability
to selectively focus on the most relevant parts of the input,
we introduce attention gates into the U-Net. In this way, the
network will pay more attention to the audio part rather than
the background noise during training.

Second, we revise the loss function of U-Net. The existing
U-Net networks use the mean squared error (MSE) loss
between pixels of the input and output mel-spectrogram, under
the assumption that every pixel is equally important. However,
the audio part should play a more critical role than the
background noise during network training. Thus, we propose
a new loss function, which assigns a higher weight to the
squared error of the audio signal part. Since the audio part
has a larger amplitude than the remaining noises, each pixel’s
weight wi is assigned proportional to its normalized strength
in decibel. Then, the loss function is formulated as follows.

L =
1

N

N∑
i=1

wi · (pi − p̂i)
2, wi =

√
pi − pmin

pmax − pmin
, (3)

where pi and p̂i refer to the pixel’s value in the mel-
spectrograms of the original audio and reconstructed audio,
respectively. pmin and pmax denote the minimum and maxi-
mum pixel strength. N is the total number of pixels.

The architecture of the whole audio reconstruction model
is depicted in Fig. 9. Our designed model can achieve a high-
quality reconstruction of the audio signal. As shown in Fig. 10,
compared with the raw mel-spectrogram of the eavesdropped
RF signal in Fig. 10(b), the key frequency components of
the audio become more outstanding in the reconstructed mel-
spectrogram in Fig. 10(c). After obtaining the recovered mel-
spectrogram from the enhanced U-net network, we need to
transform the spectrogram into the audio signal. Thus, we
employ the Griffin-Lim algorithm which is popularly used to
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Fig. 10. Comparison of the (a) original audio’s mel-spectrogram, (b) raw RF
signal’s mel-spectrogram, and (c) reconstructed mel-spectrogram

reconstruct the audio waveform [27]. The Griffin-Lim algo-
rithm reconstructs the audio signal by randomly initializing a
complex-valued phase mel-spectrogram and iteratively updat-
ing it to minimize the difference between the mel-spectrogram
of the reconstructed signal and the original one.

F. Speech Command Recognition

We utilize the reconstructed mel-spectrogram of the eaves-
dropped RF signal to automatically recognize various speech
commands transmitted in the audio wire. Speech commands,
e.g., digit and action commands, are widely applied for mes-
sage and task conveying in military systems and large-scale
industrial manufacturing, which involve critical information
under spying risks. Thus, we demonstrate the ability of RF-
Parrot in speech command recognition. In specific, we employ
the ResNet-50 convolutional network [28] to train the com-
mand recognition model on the digit and action commands.
ResNet-50 is selected as it has been widely used in classifying
speech spectrograms with high accuracy [29], [30].

IV. EVALUATION

In this section, we present the implementation details,
employed metrics, and evaluation results of RF-PARROT in
audio eavesdropping and speech command recognition.

A. Implementation

1) Experiment setup: We implement RF-PARROT using
commercial devices, including a USRP N210 as the SDR, a
pair of SX200-150(P)C log-periodic antennas, and CE3512K2
D-MOSFETs. The experiment setup is shown in Fig. 11.
We select multiple types of audio wires and embed our
designed retroreflector inside. The original audio files are
played by a smartphone whose audio jack is connected to
the audio wire. The RF signal is controlled by GNURadio.
The transmitting power and RF signal sampling rate are set to
10 dBm and 200 KHz, respectively. The received RF signal
amplitude is saved as a wave file. The audio mel-spectrogram
reconstruction and speech command recognition models are
implemented via Pytorch using the RTX 4090 GPU. For mel-
spectrogram calculation, we set the hop length and the number
of mel bands to 80 and 128, respectively. All audio files are
aligned to 1.28 s, and the mel-spectrogram size is 128*128.

2) Speech audio dataset: We employ two public speech
audio datasets, i.e., Free Spoken Digit Dataset (FSDD) [31]
and Speech Commands Dataset (SCD) [32]. FSDD includes
3,000 recordings of 10 English-spoken digits (’zero’ to ’nine’)
from 6 subjects. SCD consists of 64,727 audio files collected
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Fig. 11. Experiment setup of RF-Parrot for through-wall audio eavesdropping

from thousands of subjects, each containing an English-spoken
command, i.e., 10 action commands (’Up’, ’Down’, ’Left’,
’Right’, ’On’, ’Off’, ’Stop’, ’Go’, ’Yes’, ’No’) and 10 digits
commands (’zero’ to ’nine’). In audio reconstruction and
command recognition tasks, data samples used for training
and testing are allocated in a ratio of 4:1.

3) Evaluation metrics: We employ four types of metrics to
evaluate the performance of RF-PARROT on audio reconstruc-
tion and speech command recognition as follows:
• Mel-cepstral distortion (MCD) is an objective measure

of the difference between the original audio’s mel-frequency
cepstral coefficients and that of the reconstructed one. Smaller
MCDs indicate better audio reconstruction performance. Note
that the speech recognition system can perceive the recon-
structed audio that has an MCD of less than 8.
• Signal-to-noise ratio (SNR) and Peak signal-to-noise

ratio (PSNR) are used to assess the quality of the audio signal.
A higher SNR value means less noise interfering with the
signal. A higher PSNR value represents a higher quality of
compressed signal compared with the original one.
• Mean opinion score (MOS) is a subjective measure

to evaluate the reconstructed audio quality. We recruit 20
volunteers, including 10 males and 10 females aged from 20
to 30, to listen to the reconstructed audio and score the audio
similarity compared with the original one. The score ranges
from 1 to 5, where a higher score means a higher similarity.
• Accuracy and F1-score are used to evaluate the perfor-

mance of speech command recognition, including 10 spoken-
digit classifications and 10 action command classifications.
B. Performance of audio reconstruction

In this experiment, we investigate the audio reconstruc-
tion performance from various aspects. We first calculate
the MCD value for the reconstructed audios with 10 digits
and 10 action commands, respectively. As depicted in Fig.
12, the MCD values of the 20 commands’ eavesdropped
audios are all below 8. The lowest MCD of 5.9 is achieved
for the action command ’down’, while the highest MCD of
7.9 corresponds to the digit command ’eight’. Meanwhile,
we also compare the MCD of the audio eavesdropped by
E-MOSFET, raw audio eavesdropped by D-MOSFET, and
reconstructed audio eavesdropped by D-MOSFET in Table
II. The D-MOSFET reconstructed audio by the convolutional
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TABLE II
COMPARISON OF MCD USING DIFFERENT MOSFETS

MOSFET type E-MOSFET
D-MOSFET

Raw Reconstructed
MCD 23.1 17.0 6.8

TABLE III
F1-SCORE OF SPEECH COMMAND RECOGNITION

Command 0 1 2 3 4 5 6 7 8 9
F1-score 0.98 0.92 0.95 0.93 0.91 0.93 1.0 1.0 0.94 0.93

Command go stop up down left right on off yes no
F1-score 0.97 0.91 0.98 0.94 0.91 0.96 0.95 0.91 0.98 0.95

neural network achieves the lowest MCD of 6.8, revealing
the effectiveness of our proposed audio reconstruction method.
The above MCD results indicate that the eavesdropped audio
signal closely resembles the original speech signal.

Next, we calculate the SNR and PSNR for the 20 com-
mands’ reconstructed audios in Fig. 13. The average SNRs
and PSNR of different commands are 3-5 dB and 15-20 dB,
respectively, indicating that the critical audio information is
more dominant than the background noise. The digit command
’eight’ achieves the lowest PSNR whereas the action command
’down’ achieves the highest PSNR, which also matches with
the MCD results. The results show that the reconstructed audio
signal can achieve a relatively high quality.

Finally, we illustrate the average MOS of each speech
command among all volunteers in Fig. 14. The MOS values
of all 20 commands range from 3.1 to 4.4 with an average of
3.6. The highest MOS can reach 4.1 for the digit command
’nine’, and the lowest MOS of 3.4 for the action command
’up’ is still above the borderline level of 3, which means
that volunteers think that over half of the original speech
is recovered. In a word, the above objective and subjective
evaluation results validate that RF-PARROT can realize high-
quality reconstruction of the eavesdropped audio signal.

C. Performance of speech command recognition

In this experiment, we show the speech command recog-
nition performance using the reconstructed mel-spectrogram.
The F1-scores of all 20 commands are illustrated in Table III.
The highest F1-score can reach 1 for the ’six’ and ’seven’
commands, and the lowest F1-score is 0.91 for the ’four’
and ’off’ commands, which are all above 0.9. The detailed
confusion matrices are shown in Fig. 15. Commands that have
similar vowels, e.g., ’five’ and ’nine’ (all contain the /AI/),
’off’ and ’stop’ (all contain the /O/), are more likely to be
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mixed up with each other. Apart from using the D-MOSFET
retroreflector, we also use the E-MOSFET-based retroreflector
to eavesdrop on the audio signal, then train and test the
command recognition model, whose average accuracy is only
around 65%. By contrast, the average recognition accuracy
using D-MOSFET is 95% for the 20 speech commands,
indicating that the reconstructed audios by RF-PARROT can be
accurately distinguished among different speech commands.

D. Impact of practical factors
1) Impact of the distance: In this experiment, we investi-

gate the effect of the through-wall distance between the target
wire and RF transceivers on eavesdropping performance. We
set different distances, i.e., 0.5 m, 0.7 m, and 1 m. The SNR
and PSNR of the eavesdropped audio for different distances
are shown in Fig. 16. The SNR and PSNR generally decrease
with a longer distance. In specific, when the distance increases
from 0.5 m to 1 m, the SNR drops from 4.6 to 2.1; the
PSNR declines from 17.7 to 16.3, as a result of more signal
attenuation in the air. Although we witness the decline of SNR
and PSNR, they are still maintained at a relatively high level.
In addition, the current gain of RF antennas is set as 10 dB.
We find the eavesdropping audio quality for longer distances
can be further enhanced by increasing the gain of RF antennas.

2) Impact of the audio volume: In this experiment, we
investigate the effect of audio volume from the smartphone
on the eavesdropping performance. We set different levels of
audio volume, i.e., 60%, 80%, and 100%. The SNR and PSNR
of the eavesdropped audio signal under different volumes
are shown in Fig. 17. By the incline of audio volume, both
SNR and PSNR grow steadily because a higher volume can
resist more of the RF signal attenuation effect and background
noises. Albeit the minor degradation of reconstructed audio for
the lower volume, the SNR and PSNR exceed 0 dB and 15 dB,
respectively, stilling outstanding from the underlying noises.
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3) Impact of the audio wire type: In this experiment, we
investigate the effect of different types of audio wires on eaves-
dropping performance. We choose three types of audio wires,
i.e., SYV75 wire series (SYV75-2-1 and SYV75-2-2) and
daily 3.5 mm aux audio wire. SYV75 wire series are widely
applied in the transmission of analog signals. Different models
of the SYV75 wire vary in diameter, weight, attenuation
coefficient, etc. The SNR and PSNR of the eavesdropped audio
signal using different wires are shown in Fig. 18, which remain
at similar and high levels, i.e., around 5 dB in SNR and 17 dB
in PSNR. This shows that our designed retroreflector can
effectively recover the audio signal transmitted via different
audio wires. We then use the audio signal eavesdropped from
different wires to recognize the speech command. The recog-
nition accuracy is all above 90%, providing more evidence of
the effectiveness of RF-PARROT across audio wires.

E. Countermeasures
We recommend the following countermeasures to defend

against potential eavesdropping on wired audio. (1) Interfer-
ence. We can generate irregular RF jamming signals on the
frequency band of the attack signal to disturb the received
RF signal on the attacker’s side. Past works have shown that
channel randomization can effectively against RF eavesdrop-
pers [33]. (2) Electromagnetic shielding. We can also add
RF shielding, e.g., metal foil or wire mesh, on the audio wire
to impede the attacker from activating the retroreflector.

V. RELATED WORKS

A. Vibration-based Audio Eavesdropping

Acoustic signals are mechanical waves that force surround-
ing elastic objects to vibrate continuously. Researchers harness
such phenomenon to investigate various vibration sensors,
e.g., accelerometer [34]–[36], laser [7], RFID [6], WiFi [5],
mmWave [2]–[4] and videos [8], for audio eavesdropping.
AccEar employs the built-in accelerometer in the smartphone,
which is sensitive to the mechanical wave caused by the
phone’s loudspeaker, to reconstruct the played audio [35].
Tag-Bug places RFID tags on the surrounding objects around
the loudspeaker and collects the backscattered RFID signal
for eavesdropping [6]. mmMIC realizes speech recognition
directly from the mouse and throat reflected mmWave sig-
nal [37]. However, the above vibration-based eavesdropping
methods require the audio to be played out by the loudspeaker
so that the nearby object’s surface can be driven to vibrate.
By contrast, our RF-Parrot releases the above constraint with
the help of the designed retroreflector, which can directly
eavesdrop on the audio during transmission through the wire.

B. Magnetism-based Audio Eavesdropping
When playing audio, the speaker radiates a changing mag-

netic field, which can be used to infer the audio content.
MagEar designs a coil to capture the magnetic field variation
and reconstruct the audio from the earpiece [10]. VoiceListener
employs the magnetometer as the eavesdropper and develops
a training-free and universal mechanism to effectively recon-
struct the audio from low-resolution sensors [38]. Magnetism-
based approaches manage to restore the sound of speakers with
smaller volumes, e.g., headphones and earpieces. However,
they face a critical limit of the eavesdropping distance within
50 cm due to the sharp attention of the magnetic field. In
comparison, RF-Parrot can achieve through-wall audio eaves-
dropping at a longer distance.
C. RFRA-based Audio Eavesdropping

RFRA practices can be traced back to “The Thing” [39],
also known as the Great Seal bug, which is secretly installed
in an ambassador’s office for spying on talking speech and
other outbound audios. Recently, RFRA schemes have been
designed to conduct eavesdropping on the wire-transmitted
signal, but only for digital signals [12]–[15]. For example,
researchers have shown that digital keystrokes transmitted via
a USB cable can be restored with less than a 5% error rate by
the digital RFRA method at the 1 m distance [13]. However,
existing works ignore the prevalent presence of analog audio
signals in practice. Thus, we improve the previous design of
retroreflectors in RFRA using the D-MOSFET and effectively
eavesdrop on the audio signal with high quality.
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VII. CONCLUSION

This paper proposes the first wired analog audio eavesdrop-
ping attack, RF-PARROT. With a modified earphone wire em-
bedded with a tiny and judiciously designed retroreflector, RF-
PARROT can remotely eavesdrop on audio signals through the
wire. By leveraging the encoder-decoder neural network with
convolutional layers for audio reconstruction, RF-PARROT can
achieve 95% accuracy in identifying speech commands. We
believe this work will raise awareness of the potential safety
hazards of earphone systems.
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