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Abstract—Vibration sensing is crucial to human life and work,
as vibrations indicate the status of their respective sources (e.g.,
heartbeat to human health condition). Given the inconvenience of
contact sensing, both academia and industry have been intensively
exploring contact-free vibration sensing, with several major de-
velopments leveraging radio-frequency (RF) technologies made
very recently. However, a measurement study systematically
comparing these options is still missing. In this paper, we choose
to evaluate five representative commercial off-the-shelf (COTS)
RF technologies with different carrier frequencies, bandwidths,
and waveform designs. We first unify the sensing data format
and processing pipeline, and also propose a novel metric v-
SNR to quantify sensing quality. Then our extensive evaluations
start from controlled experiments for benchmarking, followed
by investigations on two real-world applications: machinery
vibration measurement and vital sign monitoring. Our compre-
hensive study reveals that Wi-Fi performs the worst among all
five technologies, while a lesser-known UWB-based technology
achieves the best overall performance, and others have respective
pros and cons in different scenarios.

Index Terms—Vibration sensing, contact-free sensing, RF sens-
ing, COTS RF technologies, IR-UWB, mmWave radar.

I. INTRODUCTION

Vibration takes place everywhere and all the time in our
daily life and work [1]. Our human bodies vibrate as we
have heartbeat and respiration, while our appliances and tools
also vibrate as they may rotate (e.g., a fan) or reciprocate
(e.g., a piston). These major vibrations, along with other ac-
companying vibrations (e.g., caused by friction or other types
of resistance), strongly indicate the status of either a human
body or a working part. For example, abnormal heartbeats
proceed sudden cardiac attack [2], [3], and high vibrations of
a wind turbine indicate its eccentric unbalances [4]. There-
fore, vibration sensing has long been a crucial functionality
that we heavily rely on. Conventional approaches to sensing
vibration largely rely on contact sensors that directly touch the
target object [5]. Though these approaches certainly produce
accurate results, the contact nature can be inconvenient (e.g.,
for people) or even impractical (e.g., for rotational parts).
Consequently, contact-free sensing has been a research target
for both academia [6], [7], [8], [9], [10] and industry [11],
[12] in the past several decades.
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Among all the existing contact-free sensing methodologies,
two major developments on radio-frequency (RF) sensing have
taken place in the last couple of years. On one hand, several
commercial off-the-shelf (COTS) radios have been produced
by major electronics manufacturers [13], [14], [15], [16]; they
offer a wide choice in terms of the operating frequency, rang-
ing from 7 to 77GHz. On the other hand, research communities
have gained a deeper understanding of Wi-Fi sensing [17],
thus more effectively exploiting this communication infras-
tructure for sensing purpose. In fact, academic researchers
have started using these COTS radios for various vibration
sensing purposes, which include, among others, millimeter-
Wave (mmWave) radios and Impulse-Radio Ultra WideBand
(IR-UWB) for human vital sign monitoring [18], [9], [19], and
mmWave radios for human speech sensing (lip or vocal folds
vibrations) [20], [21]. Given all these mature technologies and
potential applications, a question naturally arising when facing
a certain application is: which technology performs the best for
contact-free vibration sensing?

A closely related measurement study has partially answered
the above question, focusing only on monitoring respiratory
rate during sleep [22]. However, our study delivers novel
insights in the following five aspects. First, we propose a
new metric, v-SNR, to quantify general RF vibration quality.
Second, we evaluate only mature RF sensing technologies.
This substantially increases the applicability of our study
results, while enabling us to perform the study using a
unified processing pipeline. Third, we consider general vibra-
tion sensing and hence a broader range of applications. As
these applications share the vibration nature but vary in, e.g.,
frequency and strength, putting them side-by-side allows us
to better understand the capability of individual RF sensing
technologies. Fourth, we consider sensing applications in real-
life settings, very different from the single fixed experiment
scenario in [22]. This makes our study more realistic as, in
practice, RF sensing has to be performed under uncertain
conditions, e.g., various distances or even non-line-of-sight
(NLOS). Finally, we examine the ability of multi-target mon-
itoring often demanded by real-life applications.

Essentially, we consider five RF technologies, namely Wi-Fi
at 5 GHz, IR-UWB at 7 GHz [13], and (near-)mmWave radios



at 24, 60, and 77 GHz [14], [15], [16]. These technologies
all process received signals in a joint time-frequency manner,
enabling us to unify existing proposals (e.g., [8], [18]) with
a general sensing model and processing pipeline. We take
a LEGO rotary as the base application to provide micro-
benchmarks for all five technologies, aiming to understand
their pros and cons under various conditions. In addition, we
perform case studies on both machinery vibration sensing and
human respiration/heartbeat monitoring. Different from the
clinical study with fixed settings in [22], our study on vital
sign monitoring is conducted under daily-life environments,
mimicking realistic healthcare applications. The following
major contributions and insights are made and drawn from
our extensive experiments:

• We propose a general metric, v-SNR, to quantify general
RF vibration sensing quality; such a widely applicable
metric has never appeared in literature.

• Wi-Fi, as a communication-oriented device, is far from
useful for vibration sensing.

• mmWave radios, though highly boosted by industry and
performing reasonably well, are not cost-effective.

• Lesser-used IR-UWB and 24 GHz mmWave radio can
have the best overall performance.

• Leveraging to v-SNR, we we provide the guidelines for
vibration measurements with different RF technologies.

The rest of this paper is organized as follows: Sec. II briefly
studies the literature on mechanical and human-centered vi-
bration sensing. Sec. III presents the generic model of the RF
vibration sensing, which in turn allows us to introduce the
novel metric v-SNR. Sec. IV shows the data pre-processing
and sensing algorithms in our paper. Sec. V elaborates on
the evaluation results under various realistic settings. Sec. VI
concludes our paper.

II. RELATED WORK

RF vibrometry has been recently applied to both mechan-
ical vibration measurement and vital sign monitoring, and a
comparative study on RF respiratory monitoring has also been
reported in [22]. However, [22] solely focuses on multistatic
devices, whereas we devote our study to monostatic ones.
For example, their multistatic IR-UWB is a communication-
oriented device with a separated transmitter (tx)-receiver (rx)
pair, while our monostatic IR-UWB with a single transceiver
is a COTS device dedicated to sensing. Therefore, we exclude
proposals discussed in [22], but include multistatic Wi-Fi in
our study for backward compatibility.

A. Mechanical Vibration Measurement

Early proposals employ specially designed hardware as RF
vibrometry for robots [23] and actuators [24]. Wi-Fi device for
vibrometry [25] emerge later due to its reliance on commercial
hardware. Recent years have witnessed a revival of RF tech-
nologies with a large bandwidth, including IR-UWB [26] and
mmWave radars [27], with the latest RF vibrometry achieving
micrometer-level precision [8]. Meanwhile, audio sensing that
aims to recover acoustic signal by sensing vibrations produced

by speakers [28] or human voice cords [20], [21] becomes a
research hotspot. As for the algorithm, Fourier transform is
enough for general vibrometry [26], [24], [27], [28], while
advanced learning technique [20] and mode decomposition
algorithm [21] may be needed for more complex tasks such
as audio sensing.

B. Vital Sign Monitoring

Applying RF vibrometry to clinical scenarios or even do-
mestic environments leads to vital sign monitoring. Similar
to the general vibration sensing, Wi-Fi was firstly adopted to
estimate respiratory rate [29], [30] and heart rate [31] due
to its wide availability. Though some researches still stick
to Wi-Fi sensing [32], dedicated COTS devices have been
increasingly considered, including IR-UWB monitoring for
respiration [18], [19] and heartbeat [33], [18], as well as
mmWave radars monitoring for the same purposes [24], [27];
both IR-UWB and mmWave radars have capacity to handle
multiple users [18], [34].

Apart from the hardware differences, differences of vi-
tal sign estimation algorithms should also be noted. The
traditional method for estimating vital sign frequencies is
non-parametric Fourier transform [31]; to counter the lack
of precision and reliability of Fourier transform, parametric
autoregressive [35] and state space method [36] are also used.
Moreover, due to the non-stationarity of vital signals, mode
decomposition methods have also been explored to break
down the signal. Examples include empirical mode decom-
position [37], ensemble empirical mode decomposition [38]
and variational mode decomposition [18].

III. COMMON RF SENSING MODEL

In this section, we first introduce a common model for
characterizing the impact of vibration on an RF channel, then
we explain how individual RF technologies respond to (thus
sense) the vibration.

A. Vibration RF Channel Model

Given a pair of transmitter and receiver, in an indoor
environment with P propagation paths, we model the baseband
RF channel as follows [39]:

h(t) =
∑P

p=1αpe
j2πfcτp + n(t), (1)

where fc is the carrier frequency, αp is the amplitude of p-th
path, and n(t) is Gaussian noise with variance σ2. In particu-
lar, we have τp = τ sp + τvp where τ sp and τvp are the p-th time
delays caused by static reflections and vibration reflections,
respectively. Though τ sp = dp/c with dp being the path length
and c being the light speed, τvp is far more complicated. We
follow the convention to describe any vibration via a spinning
geometric model [25], [40]. Defining vibration radius r as
the distance between spinning center and the reflector point,
we model the displacement as:

∆dp(t) ≈ r
[
1− cos

(
2πfv

p t
)]

, (2)

where fv
p is the vibration frequency of the p-th path. This

allows us to compute τvp (t) as ∆dp(t)/c.
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(a) RF signal matrix H. (b) Wi-Fi matrix. (c) IR-UWB matrix. (d) FMCW matrix.

Fig. 1: The RF signal matrix and corresponding vibration sensing heatmaps for three RF techniques. Multiple vibrations at
different distances can be clearly seen from the fast-time bins in both (c) and (d).

Considering a transmitted signal s(t), the received signal
is y(t) = h(t) ∗ s(t), where ∗ denotes convolution. Although
the vibration reflection time delay τvp (t) contained in y(t) is
always used to sense a vibration, individual technologies may
differ significantly due to their distinct features (see Table I
for those involved in our study), yet we intend to unify them
into a common framework in the following. For the sake of
brevity, we hereby consider only one path (thus removing the
subscript p), and omit the noise term.

TABLE I: The list of COTS RF sensing devices: FoV com-
prises two angles, namely azimuth and elevation.

RF techs Devices Freq BW FoV
(GHz) (GHz) (Degree)

Wi-Fi Intel 5300 [17] 2.4, 5.8 0.04 360,90
IR-UWB Novelda X4 [13] 7.29 1.4 120,120
mmWave Infineon XENSIV [14] 24 0.25 76,19
mmWave TI IWR6843 [15] 60 4 120,120
mmWave TI IWR1443 [16] 77 4 56,28

B. Wi-Fi

As Wi-Fi adopts Orthogonal Frequency Division Multiplex-
ing (OFDM), we use L, eℓ, and yWℓ to denote the number of
OFDM subcarriers, the ℓ-th subcarrier, and the received signal,
respectively. Then, we have

yWℓ (t) = αℓe
j2πfℓϕ(t)sℓ, ℓ ∈ {1, ..., L}, (3)

where αℓ is the channel gain of ℓ-th subcarrier, fℓ is the
frequency of the ℓ-th subcarrier, and ϕ(t) = [d + ∆d(t)]/c.
To obtain the channel state information (CSI) of Wi-Fi, the
zero-forcing receiver is applied ĥℓ = yWℓ /sℓ. Since each CSI
vector of a packet [ĥℓ]ℓ∈{1,··· ,L} has L OFDM subcarriers,
K packets induce a K × L signal matrix. We define K
as slow-time and L as fast-time because they sample the
signal at different timescales. Figure 1(a) illustrates this signal
model, and Figure 1(b) provides the vibration Wi-Fi matrix
as an example. Due to the narrow bandwidth of Wi-Fi, its
baseband signal offers a very coarse-grained resolution (e.g.,
7.5 m with 40 MHz bandwidth) to differentiate d, so we have
d+∆d(t) ≈ ∆d(t), which we summarize as “having only one
distance bin along the fast-time dimension”. In other words,
Wi-Fi is largely confined to sensing only one vibration target.
Fortunately, ∆d(t) can still be sensed along the slow-time
dimension leveraging the carrier phase and amplitude.

C. IR-UWB

Designed specifically for sensing purpose, an IR-UWB
transmits pulses of extremely short time duration. Therefore,
the baseband signal occupies a wide bandwidth B (usually B
≥ 1GHz), and thus offers a fine-grained resolution in the time
domain. We can write the received pulse signal yI(t) as:

yI(t) = αej2πfcϕ(t)e
− (t−Ttx/2−ϕ(t))2

2ϵ2tx , (4)

where ϵtx = 1
2πB−10 dB(log10(e))

1/2 is the standard deviation of
the Gaussian pulse which determines the -10 dB bandwidth,
and Ttx = 1/B is the signal duration, respectively. We
gather L time-domain samples to form a fast-time vector:
due to very short Ttx, each sample can be deemed as a
bin corresponding to a certain value of the static distance
d. We can stack K such L-dimensional vectors to build a
K × L signal matrix. Essentially, each range bin contains a
K-dimensional slow-time vector, whose phase and amplitude
can be used to sense ∆d(t). The Figure 1(c) shows such an IR-
UWB matrix. Different from Wi-Fi, IR-UWB can sense both d
and ∆d(t) due to its much wider bandwidth (1.4GHz as shown
in Table I); we shall leverage this to both monitor multiple
vibration targets and also to remove background inferences.

D. mmWave Radio

Operating at a center frequency of several tens of GHz (24,
60, 77 GHz in Table I), mmWave radio is another dedicated
COTS sensing technology. Typically, a mmWave radio exploits
Frequency-Modulated Continuous-Wave (FMCW) to transmit
a chirp signal that sweeps across a wide frequency spectrum.
Denoting the total bandwidth by B and the time span of a
single chirp by T S, it is shown in [41] that the reflected signal
yM(t) can be written as:

yM(t) = αVtxΠ(t− ϕ(t)) e−j2π(βϕ(t)t+fcϕ(t)−βϕ2(t)/2), (5)

where β = B/T S, Vtx is the amplitude of the transmit-
ted signal and Π(t) is a rectangular function with range
[−T S/2, T S/2]. Time-domain sample of the signal given by
Eqn. (5) forms an L-dimensional vector, where the frequency
βϕ(t) and the phase fcϕ(t)− βϕ2(t)/2 characterize how the
signal changes over time. We further apply FFT to transform a
vector into its frequency-domain, then we construct a K × L
signal matrix by stacking K transformed vectors, as shown



in Figure 1(d). As these mmWave radios also occupy a wide
bandwidth (often several GHz), each frequency sample in an
L-dimensional fast-time vector can be deemed as a bin, so
that frequency peaks can be exploited to differentiate static
distances d. More importantly, since their carrier frequencies
are much higher (up to 10 times of other RF technologies),
the resulting very short wavelength yields a higher sensitivity
to the vibration induced ∆d(t).

Remarks: Some of these RF technologies have multiple radio
transceivers, so the signal matrix defined for all three RF
technologies comes from only one tx-rx antenna pair. In the
following, we shall focus on just one signal matrix, but adopt
existing algorithm [22] to select the best antenna pair.

E. Vibration Sensing Quality: A New Perspective

Different from the signal-to-noise ratio (SNR) measured
for both direct and reflection paths in communication, RF
sensing always focuses on the reflection paths, and thus needs
a new metric to quantify its performance. Consequently, we
aim to define the vibration SNR (or v-SNR) to quantify general
RF vibration sensing performance. Considering the limited
bandwidth B in Sec. III, we can rewrite the Eqn. (1) in the
following:

h(t) =
∑P

p=1αpe
−j2πfcϕp(t)sinc[2B(t− ϕp(t))] + n(t), (6)

where sinc(t) = sin t
t is the sampling function with limited

bandwidth B. Recalling the K × L signal matrix shown in
Fig. 1a, we have t = k∆t+ ℓK∆t where ∆t is the slow-time
frame period. Eqn. (6) yields two important insights for us: i)
when the bandwidth B is very large, limB→+∞ sinc(2Bt) =
δ(t), making the extraction of vibration signals more precise,
and ii) B is also a crucial factor affecting on the physical
separability of multiple vibration sources.

To verify our statements, we conduct experiments using
four COTS RF sensing devices with different bandwidths.
In our experiments, the two subjects vibrate with 49 and
90 rpm, respectively, and they are separated by a distance
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Fig. 2: The signal matrix with different bandwidths B for
sensing the vibrations of two subjects.

of 37.5 cm. We depict the heatmaps of the resulting signal
matrix in Fig. 2. On one hand, Fig. 2a and 2b indicate that two
vibration subjects are merged together, because the insufficient
bandwidth of Wi-Fi and 24 GHz leads to a range resolution
too low to separate the subjects. On the other hand, IR-UWB
and 60 GHz have much finer-grained resolution due to their
wider bandwidth, allowing them to clearly distinguish the
two vibration subjects and also be more robust to noise and
interference, as shown by Fig. 2c and 2d.

To quantify general RF vibration sensing quality, we derive
the p-th reflection channel by hp based on Eqn (6) as:

hp(k, ℓ) = αpe
−j2πfcϕp(k,ℓ)sinc[2B(k∆t− ϕp(k, ℓ))]. (7)

Let p = n denote the vibration subject of interest and p = m
otherwise, we now define the v-SNR as follows:

γn(k, ℓ) = 10 log

(
|hn(k, ℓ)|2∑

m∈QI |hm(k, ℓ)|2 + σ2

)
, (8)

where QI refers to the interfering reflection set.
Defined for a specific bin ℓ in Eqn. (8), v-SNR of a given

subject should be the maximal one achieved among a set of
bins around the actual range of the subject. However, Fig. 2
(apart from Fig. 2a) also reveals an interesting property of
the signal matrix: because vibration may affect the range
of the subject, a single bin may fail to capture the real
vibration trace. As shown by the red vertical line indicating
the maximal v-SNR bin for the first subject, it could even
sample the noise (blue) region in Fig. 2d when the fine-
grained range resolution leads to a very narrow vibration trace,
resulting in invalid readings (especially in terms of phase).
Therefore, while a wider bandwidth does improve the range
resolution so that different subjects can be differentiated, it
may potentially invalidate the bin-based sampling rule. Under
such circumstance, we are left with two choices in practice:
either sampling vibration by strictly following its (curved)
trace yet with very high complexity, or sticking to bin-
based sampling but avoid using a too wider bandwidth.
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Fig. 3: Sampling vibration in 4 GHz bandwidth in different
ways: (a) optimal bin-based, (b) sub-optimal bin-based, (c)
(vibration) curve tracing, (d) bin merging with downsampling.



We also conduct the experiments using the 60 GHz radar to
verify our statements. We first adopt the bin-based sampling
and plot the phase changes of the optimal bin and sub-optimal
bin in Fig. 3a and 3b, respectively. Apparently, phase noises
are introduced due to bad sampling around the (amplitude)
peak regions. Though sophisticated curve tracing obtains per-
fect phase readings in Fig. 3c, a simplified alternative merging
a couple of close-by bins via downsampling also gain near-
perfect outcome in Fig. 3d.

IV. EXPERIMENT METHODOLOGY

Different from pure respiration monitoring [22] where the
vibration frequency is known to exist only within a very
narrow range, general vibration sensing cannot assume such a
strong prior. In addition, there might exist multiple vibration
targets and even the same target may produce different vi-
bration frequencies. Therefore, our vibration sensing method-
ology stresses on data pre-processing, as using the impact
of ∆d(t) on the slow-time dimension to deduce a certain
vibration frequency is rather standard.

A. Pre-processing

The signal matrix of any RF technology goes through the
following pre-processing pipeline.

a) Static Clutter Suppression: A typical indoor envi-
ronment always causes reflection signals from static objects
(e.g., furniture and walls), beside the vibration targets. These
static reflections can often be so strong to bury the vibra-
tion reflections. Therefore, suppressing such static clutters
is very important. Among many static clutter suppression
approaches [41], we choose a simple yet efficient moving
difference filter as these reflections remain invariant to ∆d(t).
Essentially, we estimate the residue signal matrix R as:

R(i, j) = β [H(i, j)−R(i, j − 1)] (9)

where i, j index fast-time and slow-time respectively, H(i, j)
is an element of the signal matrix, β ∈ (0.95, 1). The vibration
induced reflections should be largely contained in R.

b) Vibrating Target Differentiation: After the static clut-
ter suppression, the residual signal matrix R mainly contains
vibration reflections in slow-time columns, while the corre-
sponding distances are indicated by fast-time bins. However,
as R is still pretty noisy, we cannot use a plain threshold
to differentiate the vibrating targets among the bins. Because
our objective is selecting the candidate range bins containing
vibration of high SNRs, we observe that, for bins potentially
containing vibrations, there exists a certain concentration in the
frequency spectrum.1 For instance, human breaths have a dom-
inant frequency at around 0.2 Hz. Therefore, we perform FFT
along each column of R to obtain R̂, and we use Herfindahl-

1According to Sec. III-B, the concept of range bin may not work for Wi-Fi
due to its limited bandwidth, yet we still treat each OFDM subcarrier as a
bin for the sake of unified treatment in our study.

Hirschman Index (HHI) [42] to calculate the concentration
level of those spectra as follows:

HHI(i) =
K∑
j=1

(
R̂2(i, j)∑K
j=1 R̂

2(i, j)

)2

(10)

We select the range bins whose HHIs are higher than a
threshold as the candidates containing vibration targets. In
other words, we stick to the bin-based sampling to be fair
to all RF devices, although some have shown to demand more
sophisticated sampling methods in Sec. III-E.

c) Extracting Vibration Signals: For an arbitrary vibra-
tion target, we cannot assume a prior knowledge on its fre-
quency range. In other words, we need to figure out which fre-
quency band contains the concerned vibration before applying
a bandpass filter. For this purpose, we apply autocorrelation
to the columns in R whose corresponding bins have been
selected by the previous target differentiation module. As
autocorrelation can “highlight” the periodic components in
a given signal, it enables us to identify the frequency range
without any prior knowledge, which then allows us to finally
use a 128th-order bandpass FIR filter to extract the vibration
signal. In reality, the vibration signals of a concerned target
may be involved in several consecutive bins (depending on the
sensing bandwidth). Because the vibration signals contained in
all these bins are essentially the same, we combine them to
improve the signal SNR.

B. Vibration Sensing Algorithms

Two main approaches leveraging the slow-time dimension
for vibration frequency sensing exist, namely time domain
and frequency domain. The time domain approach actually
adopts a peak finding algorithm inspired by Eqn. (2): since
RF signals vary according to ∆d(t) induced by vibration, this
approach counts the number of peaks within a fixed time
window to deduce the vibration frequency. The frequency
domain approach applies FFT or STFT to transform input
data into frequency domain; it finds the frequency index with
the maximum power to indicate the vibration frequency. As
suggested by Eqn. (2), ∆d(t) has a strong frequency com-
ponent determined by fv, and this component certainly has
higher power than other non-periodic components in frequency
domain. Whereas the above two approaches rely only on signal
amplitude, the received signals are actually in complex form,
i.e., containing phase information. As Eqn. (1) indicates a
linear relation between ∆d(t) and the baseband phase 2πfcτ ,
this time-varying phase information may allow a full-fledged
vibration sensing: not just frequency, but amplitude and hence
the waveform. Nonetheless, we shall emphasize on comparing
these three approaches for vibration frequency sensing in
the following, as the sensing ability for vibration amplitude is
clearly determined by fc.

V. EVALUATIONS AND COMPARISONS

In this section, we evaluated five different RF technologies
(see Table I) for sensing vibrations. Although Wi-Fi performs



reasonably well in the literature [22], [38], [25], [29], [30], our
experiments show otherwise. This could be partially caused by
our low-complexity processing pipeline. However, these fair
comparisons also demonstrate that COTS radios dedicated to
sensing can achieve a good performance even with this very
basic processing method.

A. Experiment Setup

For micro-benchmarks in Sec. V-B, we evaluate RF tech-
nologies in controlled experiments. In particular, we build a
rotary using LEGO Education EV3; it is programmed to rotate
at a certain frequency ranging from 0 to 100 rpm (revolutions
per minute), and with a radius from 1 to 15 cm. The distance
between the RF device and vibration target is 1.5 m unless
otherwise stated, and we use an optical laser sensor [12]
to obtain the ground truth. For application case studies in
Sec. V-D, the experiment settings are similar, but we adopt
a NEULOG respiration monitor belt logger [43] and the Heal
Force Prince-180B monitor [44] to obtain the ground truth of
respiration and heartbeat respectively. Among three sensing
algorithms explained in Sec. IV-B, our comparison study (left
to a full report due to page limit) shows that the frequency
domain approach is the most robust method, so we shall stick
to this algorithm in the following.

B. Micro-Benchmarks

As shown in Fig. 4, we place the rotary so that radio waves
propagate vertically to its rotation plane. As our sensing target
is the vibration frequency, we use the absolute error, i.e., the
absolute difference between the estimated frequency and the
ground truth, as the performance metric. In the following, we
check this metric against various properties of the rotary, in-
cluding frequency, radius, and orientation. We also evaluate the
impact of the environment factors, such as sensing distance,
blockage by different materials, and the number of targets.

Fig. 4: Experiment setting.

1) Frequency: We vary the rotation speed to emulate the
changes in vibration frequency, and we choose to report two
cases in Fig. 5. The results show that most devices perform
well (median errors below 1rpm) under 84.5rpm except Wi-Fi,
but only IR-UWB still works under 7.6 rpm. The latter can be
an artifact caused by our simple sampling/processing pipeline:
it cannot well handle mmWave radios’ high sensitivity to the
rotary’s very noisy motion at a very low speed. Therefore, we
fix the rotation speed to 84.5 rpm hereafter.
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Fig. 5: Impact of vibration frequency.

2) Vibration Amplitude: The vibration amplitude, emulated
by the rotary radius, is set to 5 and 15 cm in this experiment.
The results shown in Fig. 6 reveal that amplitude virtually
has no impact on the sensing performance, seemingly contra-
dicting the intuition that a larger amplitude should result in a
higher v-SNR defined in Eqn. (8) hence a better performance.
However, the sensitivity to vibration frequency can be suf-
ficient even with a minor amplitude, further corroborated by
later studies on vital sign monitoring. As a side note, the slight
abnormal behavior of 60 GHz mmWave radio is likely to be
caused by a minor defect of the product, since this system error
appears in several other experiments. We also calculate the
average v-SNRs under three vibration amplitudes for different
devices and report the results in Fig. 7. Since we use the bin-
based sampling introduced in Sec. III-E for fair comparison, a
too large (15 cm) amplitude can make the sampling miss the
vibration trace, leading to low v-SNRs.
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(a) 5 cm vibration amplitude.

Wi-Fi IR-UWB 24GHz 60GHz 77GHz

RF technologies

10
0

10
2

A
b

s
o

lu
te

 e
rr

o
r 

(R
P

M
)

(b) 15 cm vibration amplitude.

Fig. 6: Impact of vibration amplitude.
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Fig. 7: v-SNR of different vibration amplitude.

3) Orientation: The rotary orientation can change the ef-
fective area of the reflection surface, which in turn affect the
vibration sensing performance. To validate this intuition, we
conduct experiments at different orientations and the results
are shown in Fig. 8. It is observable that the accuracy of all RF
devices slightly decrease when the orientation changes from
30◦ to 60◦. The extreme case with 90◦ orientation actually
converts rotation to reciprocation, which can still be sensed as
vibration, so the impact of orientation is not as strong as for
the case of vital sign monitoring.
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(a) Orientation of 30◦.
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(b) Orientation of 60◦.

Fig. 8: Impact of rotary orientation.

4) Distance: We place the rotary at 1, 2, and 3 m distances
from the sensing devices to explore the impact of distance,
and the results are reported in Fig. 9. Not surprisingly, the
performance of all RF devices degrade in performance as
the distance increases, yet the impact is really minor. In
order to better understand how distance affects the sensing
performance, we refer to the v-SNR metric again. As shown in
Fig. 10, the v-SNRs of all RF devices decrease monotonously
from 1 to 3m, but that of IR-UWB appears to be less sensitive
to distance, and that of 24 GHz (with 250 MHz bandwidth)
degrades faster than others. While the case of IR-UWB can
be explained by its moderate bandwidth, that of 24 GHz may
be caused by inevitable multipath interference unable to be
filtered out by its insufficient range resolution.
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(a) Distance of 1 m.
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(b) Distance of 2 m.

Wi-Fi IR-UWB 24GHz 60GHz 77GHz

RF technologies

10
0

10
2

A
b

s
o

lu
te

 e
rr

o
r 

(R
P

M
)

(c) Distance of 3 m.
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(d) Overall Error.

Fig. 9: Impact of sensing distance.
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Fig. 10: v-SNR at different distances

5) Blocking Material: To evaluate the environment impact
on different RF technologies, we block the rotary using 4
different materials: brick, cotton, wood, and glass, and we
report the results in Fig. 11. We can see all five RF devices
can penetrate cotton and glass, while 60/77 GHz mmWave
radiations fail to penetrate brick and perform badly for wood.
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(a) Blocked by brick.
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(b) Blocked by cotton.

Wi-Fi IR-UWB 24GHz 60GHz 77GHz

RF technologies

10
0

A
b

so
lu

te
 e

rr
o

r 
(R

P
M

)

(c) Blocked by wood.
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(d) Blocked by glass.

Fig. 11: Impact of different blocking materials.

As 24 GHz mmWave radio has a slightly longer wavelength,
it achieves an better accuracy than the other mmWave radios.
We suspect the reason is that some crevices exist in the brick
wall that we temporarily build, and the 24 GHz radio, with
stronger power (than IR-UWB) and diffraction capability (than
60/77 GHz counterparts), successfully penetrates the brick
wall. We also observe unreasonably high bias and low variance
for the measurements of 60/77 GHz radios in Fig. 11(a). In
fact, no effective vibration can be detected by 60/77 GHz
radios, and the false frequencies are caused by the boundary
effect of the band-pass filter. Such artifacts can be readily
removed by employing another sensing algorithm (e.g., time-
domain method) explained in Sec. IV-B.

6) Number of Targets: The number of co-existing targets
is another factor to be considered, as realistic scenarios may
have multiple vibration targets to potentially interfere each
other in measurements. We put the 3 vibration targets in front
of sensing devices with mutual distance being 1 m, 1.7 m and
2 m to measure their vibration. As shown in Fig. 12, only
marginally affect the estimation accuracy for IR-UWB and
two mmWave (60 GHz and 77 GHz) radios, as their wide
bandwidths allow them to differentiate these targets, rather
than mixing their vibrations together as with Wi-Fi.
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(a) 1 target in the space.
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(b) 3 targets in the space.

Fig. 12: Impact of the numbers of targets.

C. Case Study 1: Machinery Vibration

A key issue of rotation machinery that can be indicated by
vibration is eccentric unbalance. While we focus on vibration
frequency sensing earlier, we hereby verify another ability of
RF sensing for variation of vibration amplitude; this value
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Fig. 13: Sensitivities of v-SNR to eccentric unbalance.

indicates the extent of eccentric unbalance of a rotating part.
To emulate a varying level of unbalance, we gradually add
small blocks of plasticine on one fan blade. This increasing un-
balance causes the spectrum around the rotation frequency to
“spread out”, which in turn leads to a monotonic reduction in
the peak power. Theoretically, we may detect this peak power
reduction by monitoring the v-SNR profile. The experiment
results shown in Fig. 13 exactly corroborate this conjecture.
Though all 5 RF devices can detect this minor variation, IR-
UWB appears to be more sensitive and hence may potentially
achieve a higher detection accuracy. We leave a full-fledged
quantitative study in our full report.

D. Case Study 2: Vital Signs

Now we apply RF vibration sensing to human vital sign
monitoring. Different from the studies in [22], we perform the
measurements under daily life and work conditions, and we
monitor both respiration rate and heartbeat rate.

1) Distance: A key factor affecting the vital sign estimation
error is the distance between the human body and sensing
devices. Corroborating the results in Sec. V-B4, the perfor-
mance of vital sign monitoring also slightly degrade with the
increase in sensing distance, as shown in Fig. 14, which is
can again be explained by the v-SNR over distance profile
shown in Fig. 15. It is curious to observe that the 24 GHz
obtains the highest v-SNRs. The reason is twofold: i) The
human body is much larger than the rotary, so the total signal
strength within a wider range can be higher, and ii) according
to Sec. III-E, the bin-based sampling of 24 GHz is similar to
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(a) Respiration at 1 m.
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(b) Respiration at 3 m.
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(c) Heartbeat at 1 m.
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(d) Heartbeat at 3 m.

Fig. 14: Impact of distance on vital sign estimations.
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Fig. 15: v-SNR at different distances

directly merging multiple range bins under a wider bandwidth,
potentially leading to a higher v-SNR.

2) Orientation: The orientation of the human body also
affects the vital sign monitoring; here 0◦ orientation means
radio waves propagate vertically to human face. In Fig. 16,
we can see that the errors of all RF devices go up when
the orientation changes from 30◦ to 60◦. The reason is that
the movement of human body (driven by either respiration or
heartbeat) can be modeled as reciprocation, whose modulation
effect on radio waves is more sensitive to orientation than
rotation (see Sec. V-B3). According to Fig. 16, the estima-
tion accuracy of heartbeat sensing is significantly better than
respiration sensing. A possible explanation is that, whereas
respiration most causes chest/abdomen reciprocation, heartbeat
affects many parts on human body, including common carotid
arteries via the neck.
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(a) Respiration at 30◦.
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(b) Respiration 60◦.
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(c) Heartbeat at 30◦.
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(d) Heartbeat at 60◦.

Fig. 16: Impact of human body orientation.

3) Number of Human Subjects: It is possible that multiple
people need to be put under monitoring, so we hereby eval-
uate the capability of different RF technologies in handling
multi-person vital sign monitoring. According to Fig. 17, the
performance degrades for all 5 RF devices when the number of
monitored people increases from 1 to 3, yet IR-UWB largely
maintains a competent performance. In fact, we can only re-
trieve one reading from Wi-Fi, as its narrow bandwidth cannot
differentiate targets. The relative unsatisfactory performance
of mmWave radios may be caused by our simple processing
pipeline that neglects the opportunity of spatial-temporal joint
estimation offered by their antenna arrays, but our simple
method is generally sufficient.

4) Blocking Material: Similar to Sec. V-B5, we evaluate the
effects of different blocking materials on vital sign estimation.



Wi-Fi IR-UWB 24GHz 60GHz 77GHz

RF technologies

10
-2

10
0

10
2

A
b

s
o

lu
te

 e
rr

o
r 

(R
P

M
)

(a) Respiratory rate with 1 people.
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(b) Heartbeat rate with 1 people.
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(c) Respiratory rate with 3 people.

Wi-Fi IR-UWB 24GHz 60GHz 77GHz

RF technologies

10
0

10
1

A
b
s
o
lu

te
 e

rr
o
r 

(B
P

M
)

(d) Heartbeat rate with 3 people.

Fig. 17: Impact of number of human subjects.

Due to page limit, we omit two materials (i.e., brick and
wood) as they almost block the mmWave signals completely
and bring no insight into our evaluation. We choose cotton
and glass to block the human body, and report the vital sign
estimation performance in Fig. 18. We again reach the same
conclusion that IR-UWB and 24 GHz mmWave radio have the
most robust penetration performance.
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(a) Blocked by cotton (R).
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(b) Blocked by cotton (H).
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(c) Blocked by glass (R).
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(d) Blocked by glass (H).

Fig. 18: Impact of different blocking materials on vital sign
estimation (R - respiration, H - heartbeat).

5) Window Size: We also evaluate the effects of different
window sizes on vital sign estimation. The results shown in
Fig. 19 have omitted heartbeat results since they are similar
to respiration. An interesting insight here is when the window
size increases, the estimation results get more stable: the
variances of IR-UWB and 60/77GHz mmWave radios become
smaller with a larger window size. Another effect of a larger
window size is increased accuracy, as demonstrated by the
24 GHz mmWave radio, whose estimation error is greatly
reduced by using a larger window size. Nonetheless, a larger
window also leads to a longer estimation latency.
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(a) Window size of 15 s.
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(b) Window size of 35 s.

Fig. 19: Impact of window size on resp. rate estimation.
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(a) Typing on keyboard.
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(b) Standing Up.

Fig. 20: Impact of body movement on resp. rate estimation.

6) Body Movement: The existence of human body move-
ment may affect the accuracy of vital sign estimations, but
this impact is overstated in [22]: all measurements are trashed
upon a detection of body movement. Our results in Fig. 20
demonstrate that respiratory rate estimations are not seri-
ously affected by either (quasi-)periodic movements (typing
on keyboards) or sudden movements (standing up), although
sudden movements do cause certain performance degradation,
especially for mmWave radios. We omit heartbeat results again
due to their similarity to respiration.

VI. CONCLUSION

In this paper, we have conducted the first systematic com-
parative study on COTS-RF technologies, concerning their
ability in sensing vibration. Our study involves five typical
COTS-RF devices, namely Wi-Fi, IR-UWB, and 24/60/77GHz
mmWave radios. We first summarize a common signal profile
for these devices, then we propose a common metric v-SNR
to evaluate sensing quality and a processing pipeline to handle
this profile. We take a LEGO rotary to benchmark vibration
frequency sensing performance of these RF devices under
typical impact factors, before conducting two case studies: i)
vibration amplitude sensing for detecting eccentric unbalance
in rotation machinery, and ii) human vital sign monitoring.
Contradictory to an earlier study [22], we have demonstrated
that Wi-Fi has no match to other dedicated sensing devices. In
the meantime, we have identified both IR-UWB and 24 GHz
mmWave radio as having the best overall performance.
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