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Abstract—NFC tag authentication is highly demanded to avoid
tag abuse. Recent fingerprinting methods employ the physical-
layer signal, which embeds the tag hardware imperfections for
authentication. However, existing NFC fingerprinting methods
suffer from either low scalability for a large number of tags
or incompatibility with NFC protocols, impeding the practical
application of NFC authentication systems. To fill this gap, we
propose NFChain, a new NFC fingerprinting scheme that exca-
vates the tag hardware uniqueness from the protocol-agnostic tag
response signal. Specifically, we harness an agile and compatible
frequency band of NFC to extract the tag fingerprint from a chain
of tag responses over multiple frequencies, which significantly
improves fingerprint scalability. However, extracting the desired
fingerprint encounters two practical challenges: (1) fingerprint
inconsistency under different NFC reader and tag configurations
and (2) fingerprint variations across multiple measurements of
the same tag due to the signal noise in generic readers. To tackle
these challenges, we first design an effective nulling method to
eliminate the effect of device configurations. Second, we employ
contrastive learning to reduce fingerprint variations for accurate
authentication. Extensive experiments show we can achieve as
low as 3.7% FRR and 4.1% FAR for over 600 tags.

Index Terms—NFC tag, physical-layer hardware fingerprint-
ing, authentication.

I. INTRODUCTION

Near-field communication (NFC) has now become a critical

data exchange approach in wireless communication, which has

widespread adoption in industries and people’s daily lives.

The COVID-19 pandemic has been further accelerating such

contact-free communication in commercial scenarios in terms

of packaging, tracking, and anti-counterfeiting [1]–[3]. The

global NFC market size was valued at $15 billion in 2019

and is estimated to experience significant growth and reach

over $54 billion by 2028 [4], [5]. Such prosperity of the NFC

market facilitates its versatility for more commercial use.

A core function of NFC is anti-counterfeiting, which, how-

ever, can be easily destroyed by adversaries. This is because

the data stored in the NFC tag can be easily duplicated by

common NFC readers and written into empty tags to be forged.

To avoid the leakage of tag information, many cryptographic

algorithms, e.g., hashing and asymmetric cryptography [6]–

[8], are applied to encrypt the NFC tag data. Unfortunately,

the limited power supply and storage capability of the NFC

tag constrain the implementation of many advanced encryption

methods. Compared with software-based encryption, adding

specialized hardware to the tag could bring extra computation
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TABLE I
COMPARISON WITH PREVIOUS WORKS

Work Fingerprint Scale Device Compat.
[11] TSE 20 O-scope �
[13] TR envelop+spectral 50 AWG+O-scope �
[14] TR spectral 50 AWG+O-scope �
Our multi-frequency TRAs >600 emulated reader �

ability [7]. However, such modification to the NFC tag incurs

high deployment costs for large-scale uses [9].

To tackle the above limitations, the tag physical-layer (PHY)

signal has been investigated to extract a hardware fingerprint

for tag authentication [10]–[14]. The underlying principle of

PHY-based tag fingerprinting is that distinct manufacturing

imperfections in tags’ hardware (e.g., circuit and antenna coil)

can be regarded as the tag fingerprint, which is involved in

the tag’s PHY signal. Such a fingerprint reflects the inherent

hardware properties of the tag, which is difficult to tamper

with and does not require any modification on the tag.

However, existing PHY-based NFC fingerprinting solutions

are far from wide application due to unscalability and incom-

patibility issues, as summarized in Table I. A typical solution

[11] employs the transient signal envelop (TSE) between the

reader-tag communication on the resonant frequency (i.e.,

13.56 MHz). However, the tiny envelop difference on a single

frequency only differentiates a maximum of 20 NFC tags.

Other works [13], [14] compare the spectral features of the

tag reaction (TR) under the 10 V burst interrogation signal

with out-of-specification frequencies for a maximum of 50

tags. Such a specialized burst signal is, however, incompatible

with existing NFC protocols and hinders the normal NFC

communication process. Moreover, most existing works are

implemented under a fixed and strictly controlled laboratory

environment using purpose-built devices (e.g., waveform gen-

erator and oscilloscope) [13]–[16]. In sum, previous solutions

lack the ability to distinguish a large number of NFC tags in

practical scenarios and realize real-world deployment.

To fill the above gap, we propose a new NFC fingerprinting

scheme called NFChain. Our key observation is that previous

works mainly stick to interrogating tags using signals with a

single carrier wave (CW) frequency. These single-frequency

schemes simplify the fingerprinting extraction process, which,

however, is hard to differentiate a large number of NFC tags

due to the extremely small hardware difference. In contrast, we

find that (1) NFC tags actually can be agilely activated over
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Fig. 2. The communication process between
NFC reader and tag of the ISO/IEC 14443
Type A and B standard.

a wide frequency band and (2) The tag hardware manifests

distinctive frequency responses, thus presenting different re-

actions to interrogation signals with varying frequencies. The

above findings intrigue us to break the stereotype of NFC

operating at a single frequency. We are the first to employ

a wide frequency band in NFC for tag fingerprint extraction,

which significantly enhances the fingerprint distinguishably

even for an increasing number of tags. Specifically, we design

a frequency hopping mechanism to automatically sweep the

CW frequency within 13.56-13.76 MHz with an interval of

1 KHz to sequentially interrogate NFC tags, as shown in Fig.

1(a). Then, we employ the protocol-agnostic tag response to

each interrogation signal for fingerprint extraction. We notice

that NFC communication always starts with a request signal

to interrogate the tag, after which the tag gives a response,

as the example shown in Fig. 1(b). Then, we extract the a
chain of tag response amplitude (TRA) over multiple CW fre-

quencies (Fig. 1(c)), which is determined by the tag hardware

components, as the unique tag fingerprint. NFChain does not

rely on specialized interrogation signals and complies with

FCC regulations [17] and current NFC protocols and readers.

Besides, NFChain is implemented on emulated NFC readers

using commodity antennas and generic software-defined radio

(SDR) devices.

However, implementing NFChain for practical tag authen-

tication encounters two major challenges. The first challenge

stems from the reader diversity and tag placement. Specifically,

NFC readers, even fabricated by the same manufacturer,

manifest variations in their front end. Such variations result in

different frequency responses, which significantly deviate the

TRAs over multiple frequencies of the same tag. In addition,

the tag can be arbitrarily placed on different positions relative

to the reader’s antenna, which affects the amount the energy

harvested by the tag and the corresponding TRAs. As a result,

the same tag’s fingerprint measurements become inconsistent

and lose effect with the change of reader and tag placement.

To address the fingerprint inconsistency, we first conduct

theoretical modeling of the NFC PHY signal and investigate

key factors (i.e., reader frequency responses and coil coupling

coefficient) corresponding to the reader and tag placement

effects. Then, we propose a simple yet effective factor nulling

method. The underlying principle is to carefully design two

benchmark signals from the CW and tag response signals,

which inherently involve the same reader and tag displace-

ment effects as the tag response over multiple frequencies.

The designed benchmark signals are harnessed to null the

corresponding factors for obtaining a consistent tag fingerprint.
Another major challenge comes from the noisy PHY signal

collected from the generic radio frequency (RF) device. Pre-

vious works employ high-end but costly signal generators and

acquisition devices to obtain a high-quality and precise PHY

signal. In contrast, the PHY signal from cost-effective generic

RF devices suffers from relatively strong noises, introducing

undesired fluctuations in extracted TRAs. Concerning the tiny

hardware difference among tags, such fluctuations can easily

obfuscate different tags’ fingerprints. Therefore, an effective

method is required to narrow the differences among fingerprint

measurements for the same tag under noises.

To achieve the above target, we borrow the idea of con-

trastive learning and develop a neural network model to learn

an embedding space in which we can minimize the difference

among the same tag’s fingerprints. Through our delicate design

of the network architecture and a contrastive loss function,

fingerprint measurements of the same tag are highly similar

to each other in face of PHY signal noises. Meanwhile, the

difference in fingerprints from different tags is surprisingly

magnified. The authentication accuracy is significantly im-

proved using our designed model.

In sum, our work makes the following contributions:

• We design a new NFC fingerprinting scheme, NFChain,

which takes advantages of an agile frequency band to ex-

tract a protocol-agnostic tag fingerprint and significantly

enhance authentication scalability.

• We develop a series of effective methods to ensure the

consistency of the tag fingerprint under practical settings

and enhance the tag authentication performance with a

novel design of the authentication model.

• We evaluate NFChain using over 600 NFC tags (10× than

previous works) with 6 different models. The experimen-

tal results show that we can achieve high authentication

performance with 3.7% FRR and 4.1% FAR.

II. PRELIMINARY OF NFC COMMUNICATION AND DESIGN

OF THE NFC TAG FINGERPRINT

In this section, we first introduce the preliminaries of the

NFC communication process. Second, we demonstrate the

principles of using the TRA as the NFC tag fingerprint.

A. NFC communication and the PHY signal
Current NFC protocols include ISO/IEC 14443, 15693, and

18000-3 [18]. Although these standards vary in coding and

modulation, they share the same communication flow: the
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NFC reader first sends a high-power CW signal to activate

an NFC tag, followed by a request signal to initiate the NFC

communication. Next, the NFC tag harvests energy from the

CW signal and sends back a response. Taking an example of

ISO/IEC 14443 Type A protocol in Fig. 2, the reader (i.e.,

transmitter Tx) first sends a request command (REQA) to

the tag. After being activated, the tag sends back a response

command (ATQA) to Tx. Then, the Tx sends a selection

command (SEL) to the tag. Finally, the tag will report its ID.

To capture the PHY signal during NFC communication, we

first connect a Tx antenna to the emulated reader using the

generic SDR device, as shown in Fig. 3. Then, an NFC tag is

placed above the Tx antenna. Finally, a receiver (Rx) antenna

is connected to the reader beneath the Tx antenna and records

the PHY signal. Fig. 1(b) illustrates the down-converted re-

quest, CW, and tag response signals of the ISO/IEC 14443

Type A protocol over a certain CW frequency.

Although different NFC protocols modulate the request

signal in various ways, the tag response signal adopts the same

load modulation scheme, in which a load resistor in the tag is

switched on and off. The on and off states result in the low and

high levels of the tag response signal, as depicted in Fig. 1(b).

The distance between the high and low levels refers to the

TRA, which reflects how much power the tag harvests from

the Tx antenna. The amount of harvested energy is affected

by tag hardware components, whose properties can vary from

tag to tag due to manufacturing imperfections. As such, the

TRA, which reflects the tag’s hardware characteristics, has the

potential to be a unique tag fingerprint.

B. Creation of NFC Tag Fingerprint from the TRA
A clear understanding of how the TRA is affected by the

tag hardware is necessary for designing the tag fingerprint. We

simplify the energy harvesting between reader and tag into a

voltage transformer model in Fig. 4. The harvested voltage u2

by the tag is expressed as below [19]:

u2 =
2πf · k · √L1L2 · i1√

( 2πfL2
RL

+ 2πR2C2)2 + (1− (2πf)2L2C2 +
R2
RL

)2
(1)

where f is the CW frequency, k is the coupling coefficient

between the tag and Tx antenna coils. L1 and L2 refer to the

conduction loops of Tx antenna and tag coil, respectively. i1 is

the Tx antenna’s current. C2, R2, and RL denote the capacitor,

coil resistance, and load resistor of the tag, respectively.

The harvested voltage u2 measures the amount of energy

harvested by the tag, which can be reflected from the amplitude

of the tag response signal ytag(f, t) represented as:

ytag(f, t) = Atag(f)e
−j2πft, Atag(f) ∝ u2 (2)

where Atag(f) is the tag response amplitude (TRA). Based on

Eq. (1) and Eq. (2), we pinpoint two key properties that endow
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the TRA as a unique NFC tag fingerprint as follows: (1) tag

hardware variations caused by manufacturing imperfections.

Due to the imperfect manufacturing techniques, NFC tags,

even produced by the same manufacturer, are distinct in terms

of the hardware. These manufacturing imperfections cause

variations of L2, C2, R2 and RL, making u2 and Atag change

distinctively among different tags; (2) different TRAs under

varying frequencies (f ). Although NFC tag is designed to

operate at the resonant frequency 13.56 MHz, in fact, it can be

activated within a wider frequency band of 13.06-14.06 MHz

[13], [16]. Most importantly, employing TRAs over multiple

frequencies can enlarge the hardware difference among tags.

In a nutshell, TRAs over a chain of frequencies fchain =
[f0, f1, ..., fn-2, fn-1] (n is the number of frequencies), i.e.,

Atag(fchain), incorporate unique tag hardware properties and

can be employed as the tag fingerprint.

To show the uniqueness of the fingerprint, we conducted an

exploratory experiment to collect the PHY signal and extract

Atag(fchain) from a set of NFC tags. We will introduce the

details to extract the TRA in Section III-C. In this experiment,

we hop the CW frequency from 13.56 MHz to 13.76 MHz

with a 1 KHz interval, resulting in a chain of 201 TRAs.

The extracted TRAs are depicted in Fig. 5. First, the shape

of Atag(fchain) for tags with different models (Mifare ULT,

Ntag213, Ntag216, and F08) in Fig. 5(a) exhibits apparent

difference. Second, for tags of the same model, we can also

observe distinctive fluctuations in Atag(fchain), as highlighted

in Fig. 5(b). We further calculate the Euclidean distance among

hundreds of Atag(fchain) measurements of the 9 different tags

(including tags from the same and different models) and depict

the distance distribution in Fig. 6. The distance between TRAs

of the same tag (’tag1-tag1’) is the minimum compared with

those from other tags (’tag1-tag2’ to ’tag1-tag9’), showing that

Atag(fchain) can be applied to distinguish different tags.

Finally, we analyze the feature space of the designed

fingerprint. Common SDR devices, e.g., HackRF, have an

8-bit ADC, which enables the normalized amplitude with a

resolution of 1/28 ≈ 3.9 × 10−3. Our extensive experiments

on various types of NFC tags show that a single-frequency
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TRA varies within 0.05. Thus, the TRA of a single frequency

can potentially differentiate only 0.05
3.9×10−3 ≈ 13 tags, demon-

strating the limited scale of existing works that employ a single

frequency for fingerprint extraction. In contrast, by hopping the

frequency with an interval of 1 KHz over 13.56-13.76 MHz,

the feature space is exponentially expanded to 13201=7.99 ×
10223, which significantly improves the fingerprint scalability.

C. Practical Issues Affecting the Fingerprint Effectiveness
Applying Atag(fchain) for effective NFC tag authentication

encounters many practical issues. We systematically discuss

these issues as follows.

1) Effect of reader diversity and tag placement: ytag(f, t) in

Eq. (2) is the ideal tag response signal. However, the received

PHY signal is a superposition of CW and tag response signals,

which are affected by the frequency response R(f) of the

reader RF front-end (e.g., RF circuit and antenna). Meanwhile,

the NFC tag is powered up based on the inductive coupling

effect. Thus, the amount of harvest energy is also influenced

by the coupling coefficient k between the reader antennas and

the tag coil, e.g., the overlapping area and distance between

the reader antenna and the tag coils [19]. Thereby, the actual

received tag response signal is expressed as follows.

ytag(f, t) = k ·R(f) · [Acwe
jα +Atag(f)e

jβ ] · e−j2πft, (3)

where Acw denotes the amplitude of CW signal. α and β refer

to the phases of CW and tag response signals, respectively.

In practice, NFC readers, even fabricated by the same

manufacturer, manifest different frequency responses R(f). In

addition, the tag can be placed at different positions relative

to the reader antenna in different measurements, resulting in a

different k. As such, the measured fingerprint from different

readers and tag placement, which is in fact k · |R(fchain)| ·
Atag(fchain), become inconsistent for the same tag.

2) Effect of frequency hopping: To collect Atag(fchain), we

linearly hop the CW frequency, i.e., fi = f0+ i ·Δf , where f0

is 13.56 MHz, Δf is the hopping interval, and i ∈ [1, 2, ..., n].
In our work, the received PHY signal is down-converted based

on f0. Then, the received tag response signal after down-

conversion becomes:

ydtag(fi, t) = k ·R(f) · [Acwe
jαi +Atag(fi)e

jβi ] · e−j2πiΔft
(4)

We notice that the hopping range and interval need careful

selection for two reasons. First, there is a trade-off between the

frequency range and the effective frequency band to activate

the tag. Although a wide hopping range can increase the

fingerprint feature space, the reader’s and tag’s frequency

responses dramatically decrease when the frequency is far
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away from f0, rendering a too weak CW signal to activate the

tag. Second, we can set a small hopping interval so that more

TRAs can be collected to expand the feature space. However,

a fine-grained interval could introduce more noises in TRAs,

which may degrade the authentication performance.

4) Effect of noises from RF devices: The PHY signal

collected by generic RF devices inevitably involves random

noises (e.g., thermal and flicker noises), resulting in instanta-

neous variations across different measurements of Atag(fchain)
for the same tag. Such variations may narrow the distance

among different tags’ fingerprints due to the extremely small

difference among tags’ hardware components. As observed in

Fig. 6, the distributions of tag7 and tag8 are close to each

other, showing that their fingerprint difference is relatively

small. With an increasing number of tags, the random noises

from the generic RF device may incur the overlap between

different tags’ fingerprints and decrease the tag authentication

accuracy. In NFChain, we will address the above practical

issues to guarantee authentication performance.

III. NFCHAIN DESIGN

In this section, we introduce the detailed design of NFChain.

The system overview is depicted in Fig. 7, including four

modules: (1) Request signal generation: design the frequency

hopping mechanism and generate the request signal to inter-

rogate the NFC tag. (2) Tag response segmentation: locate

and segment the tag response signal from the overall received

signal. (3) TRA extraction: extract the Atag(fchain) meanwhile

eliminating the underlying factors that affect TRAs. (4) Tag

authentication: develop an authentication model to determine

whether an unknown tag is genuine or counterfeited.

A. Request Signal Generation
Although the operating frequency of NFC antennas and tags

is specified at 13.56 MHz, tags can actually be activated at

out-of-specification frequencies within 13.06-14.06 MHz band

[13], [16]. This indicates that we can hop the CW frequency

over 1 MHz to interrogate the tag. However, commodity NFC

antennas’ frequency responses dramatically decrease over

0.2-0.4 MHz from 13.56 MHz because a smaller bandwidth

is required to increase the NFC communication range [3].

Thus, the frequency hopping range should be carefully selected

to ensure the acquisition of tag response. First, we find that

tags can be more easily activated for the rest of interrogations

if they initially harvest higher energy. Said differently, more

effective tag responses can be acquired if tags are powered up

with proper CW signals at the beginning. As such, we start the

frequency from 13.56 MHz, at which the tag can harvest the

most energy from CW signals so that we can obtain more tag

responses from the following frequencies. Second, we explore
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various kinds of commodity NFC antennas and measure their

CW signal amplitude over different frequencies, as shown in

Fig. 8. After 13.81 MHz, the CW signal amplitude of the five

antennas all drops below 0.1, which is insufficient to activate

NFC tags in our extensive experiments. To ensure enough

energy to power up the tag, we set the upper bound frequency

to 13.76 MHz with a 6 dB-beamwidth. Finally, we investigate

different hopping intervals (500 Hz - 4 KHz) between adjacent

frequencies and choose 1 KHz which achieves the highest au-

thentication accuracy as indicated by the experimental results

in Section IV-C1. By doing so, we hop the frequency over

0.2 MHz band ranging from 13.56 MHz to 13.76 MHz with

a 1 KHz interval, resulting in 201 frequencies.

In NFChain, the CW signal is formulated as xi
cw(t) =

Acw · e−j2πfit, fi = f0 + (i− 1) · 1000, i ∈ [1, 2, ..., 200, 201],
f0 =13.56 MHz, Acw = 1. The request signal is designed

as xcw(t) · xreq(t), where xreq(t) is the binary coding of

the request signal. Note that, compared to existing works

that use specialized interrogation signals [13], [14], we make

no modification to the protocol-specified request binary code

while only varying its carrier frequencies. In other words,

our frequency hopping scheme is fully compatible with the

existing NFC protocol, especially in view of NFC tags. We

set a guard time of 0.5 ms among CW signals with different

frequencies to receive the tag response signal. Note that the

request-response process to hop the whole 0.2 MHz frequency

band only costs about 0.2 s. We note that the designed request

signal can be easily integrated at the start of tag interrogation

if vendors add the tag authentication function in their readers.

B. Tag Response Segmentation
With all rounds of signals between the reader and tag, we

segment out the tag response signal for each frequency from

the request and CW signals. As shown in Fig. 1(b), the request

signal exhibits a much larger amplitude difference than the tag

response signal. Meanwhile, the CW signal keeps relatively

stable without much amplitude difference. Thus, we adopt

the difference function and signal detection strategy in [20]

to segment the tag response signal. Then, we apply a low-

pass filter to eliminate the high-frequency noise caused by the

subcarrier at 848 KHz [21] in the tag response signal.

C. TRA Extraction
Intuitively, we can extract the TRA by calculating the height

between the high and low levels of the tag response signal.

However, as discussed in Section II-C, the effects of different

readers and tag placement incur inconsistent Atag(fchain) for

the same tag. We show the Atag(fchain) measured from the

same tag with different tag positions (Fig. 9(a)) and readers
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(Fig. 9(b)). The tag position is moved from the middle to the

upper border of the antenna with a step of 0.3 cm. As depicted

in Fig. 9, the TRAs prominently deviate from each other with

only a 0.3 cm difference in the tag position. Moreover, the

difference among the TRAs is further exacerbated when using

two readers equipped with different antennas.

The inconsistent Atag(fchain) for the same tag are caused

by the coil coupling coefficient k and the reader’s frequency

response R(f), as given in Eq. (4). Thus, we design a

method, called factor nulling, to remove the effect of these

factors and maintain fingerprint consistency. The essence of

our method lies in two folds of relationships. The first fold is

the relationship between the CW signal and the tag response

signal. Since the tag response is modulated on the basis of CW

signal, the tag response inherently contains the same reader

effect R(f) as the CW signal, which is expressed as follows.

ydcw
(fi, t) = R(fi) ·Acwe

jα
′
i · e−j2πiΔft,

Then, if we divide ydtag
(fi, t) by ydcw

(fi, t), we obtain ηi as:

ηi =
ydtag(fi, t)

ydcw(fi, t)
=

k ·���R(fi) · [Acwe
jαi +Atag(fi)e

jβi ] ·����
ej2πiΔft

���R(fi) ·Acwejα
′
i ·�����

e−j2πiΔft

=
k[Acwe

jαi +Atag(fi)e
jβi ]

Acwejα
′
i

In ηi, the reader effect R(f) are successfully nulled. However,

the factor k related to the tag placement effect still remains.

Thus, we employ the second fold relationship between the

tag response of the resonant frequency f0 and that from other

frequencies. Since the tag is relatively stable when placed on

the reader during authentication, k keeps unchanged during

frequency hopping. As such, we first divide the tag response

by the CW signal on the resonant frequency as η0:

η0 =
ydtag

(f0, t)

ydcw
(f0, t)

=
k[Acwe

jα0 +Atag(f0)e
jβ0 ]

Acwe
jα

′
0

Then, we obtain the ratio between ηi and η0 as follows:

ηi

η0

= �k[ejαi +Atag(fi)e
jβi ]

ejα
′
i

· ejα
′
0

�k[ejα0 +Atag(f0)ejβ0 ]

= ej(α
′
0−α

′
i ) · ejαi +Atag(fi)e

jβi

ejα0 +Atag(f0)ejβ0
,

(5)
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in which the factor k is successfully nulled, and ej(α
′
0−α

′
i ),

ejαi , ejα0 , ejβi , and ejβ0 are constant phase values and do not

affect the amplitude. Note that our method also eliminates the

effect from frequency hopping ej2πiΔft, as shown in Eq. (5),

which is caused by the carrier frequency offset between the

signal Txx and Rx under our implementation. Then, we show

the complex signal from ηi/η0 in Fig. 10. The two concentrated

clusters explicitly correspond to the logic high and low levels

of tag response. As such, we can extract the factor-nulled

TRA by measuring the distance between two cluster centers.

The Atag(fchain) after factor nulling in Fig. 9(c-d) exhibit a

consistent pattern for different tag positions and readers.

D. Tag authentication model
Next, we develop an authentication model to detect whether

the NFC tag is genuine or forged using the fingerprint. The

built model should satisfy two key functions. First, the authen-

tication model is capable of effectively distinguishing different

tags’ fingerprints in the face of the extremely tiny difference

in TRAs, especially for tags with the same model. As shown

in Fig. 5(b), the Atag(fchain) of the tags with the same model

exhibit a similar trend, which entails careful discrimination

among different tags. To achieve this, we leverage two distinct

characteristics of the tag fingerprint: (1) The Atag(fchain)
generally exhibits different nonlinear patterns among tags.

(2) Besides the general nonlinear pattern, TRAs experience

distinct fluctuations in several local frequencies, as shown in

Fig. 5(b), potentially involving the unique feature of the tag.

Thus, to preserve the fingerprint uniqueness, the nonlinearity

and fluctuations in Atag(fchain) should be well retained. The

nonlinear activation functions (e.g., ReLU) and hidden layers

in the neural network can potentially fulfill the above target.

Second, the authentication model should resist the random

noises from generic RF devices. As we discussed in Section

II-C, the intrinsic noises induce variations in the same tag’s

fingerprint measurements. Concerning the tiny hardware dif-

ference among tags, such variations can easily obfuscate dif-

ferent tags’ fingerprints and reduce the fingerprint uniqueness.

Thus, the designed model should be able to minimize the intra-

distance of the same tag’s fingerprint measurements. To meet

this requirement, we adopt unsupervised contrastive learning,

which aims to find an embedding space in which samples of

the same class are ’pushed’ close to each other [22], [23].

In a nutshell, we design a contrastive neural network model

for tag authentication, as depicted in Fig. 11. The key feature

of the model is the design of two parallel pipelines of neural

networks, whose inputs come from the same tag’s fingerprint

measurements collected at different times. The inputs are

separately embedded into two latent vectors zm and zn through
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Fig. 11. Architecture of the tag authentication model

three fully connected neural network layers activated by the

ReLU function to preserve nonlinearly and uniqueness. The

benefit of the two inputs is that we can utilize their embedded

vectors to combat random noises. Specifically, we train the

model to minimize the difference between zm and zn because

a smaller distance means a higher similarity across different

fingerprint measurements of the same tag. Accordingly, we

design a contrastive loss function as below:

L =
1

J

J∑
j=1

[zm(j)− zn(j)]
2, (6)

where J is the length of the latent vector. Through our

experiments, J is empirically set to 16.

Finally, we employ the loss value L in the model for tag

authentication. When authenticating an unknown tag, one of

the inputs is the genuine tag’s fingerprint, while the other input

is from the unknown tag. The loss value would be rather

small if the unknown tag is genuine because the model is

trained to minimize the difference between the same tag’s

fingerprint measurements. On the contrary, if the tag is forged,

its embedded latent vector generates a different distribution

from the genuine one. Then, the loss value will be much larger.

To exemplify our idea, we train the tag authentication model

for seven tags separately, test each model using fingerprints

from the same tag and another 50 tags (with the same and

different tag models), and obtain all loss values. As shown in

Fig. 12, the loss values of the same tag are much smaller than

those from different tags.

Hence, we compare the unknown tag’s loss value with that

of the genuine tag for authentication. Specifically, we obtain

all the loss values when using the genuine tag’s fingerprint

measurements to train the authentication model. Then, we

follow the three-sigma rule of thumb [24], which is widely

used to detect anomalies (i.e., forge tags), to select a threshold

for loss comparison with unknown tags. First, we calculate the

mean μl and variance σl of all loss values. Then, we compare

the authentication performance using the summation of μl and
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s
s
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Fig. 12. Loss values of fingerprints from the same tag and different tags
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TABLE II
INFORMATION OF NFC TAGS

IC Ant. size # IC Ant. size #

NTAG 213 φ: 25mm 120 Mifare ULT φ: 25mm 100
NTAG 216 38*38mm 100 Mifare ULT C φ: 25mm 100
NTAG 424 φ: 22mm 100 F08 φ: 25mm 120

different times of σl. We set the threshold as μl + 2σl as it

achieves the best performance. Finally, if the loss value of an

unknown tag’s sample is larger than the threshold, the tag is

detected as a forge one, and vice versa.

IV. EVALUATION

In this section, we introduce the experimental setup, results,

and security analysis of NFChain.

A. Experimental setup
1) Hardware: We build an NFChain prototype as shown in

Fig. 13. In the prototype, we employ the universal software

radio peripheral (USRP) N210, which is connected with com-

modity NFC antennas as the NFC reader. Two NFC antennas,

which are synchronized and connected to the RF1 and RF2

sockets of USRP, act as the Tx and Rx antennas. We evaluate

our system using four pairs of reader antennas with different

RF front-end properties and over 600 NFC tags, which are

selected from mainstream manufacturers that have taken over

90% market share. The authentication model is trained on a

desktop with Intel CPU i7-9750H, Nvidia GeForce RTX 3060

GPU, and 32-GB memory.
2) Software: We implement the communication process be-

tween the USRP and tag using GNU Radio. The sampling rate

is set to 2 MHz. The received signal is processed in Python

for tag fingerprint extraction and authentication model training.

The model is trained via PyTorch with the Adam optimizer.

The learning rate and the number of epochs are set to 1e-3 and

500, respectively. For the genuine tag, we repeat the request-

response process and collect 300 fingerprint measurements

which are permutated into thousands of pairwise combinations

to train the authentication model. The training data collection

cost around 60 s. To save time on data collection, we can

employ the multiple-flow scheduling method and network

architecture proposed in [25]. For a large batch of tags,

the fingerprinting process can be accelerated by employing

multiple readers. The model training takes about 15 s, and

each model’s size is around 15 KB. In terms of model testing,

we collect another 20 fingerprint measurements from each

testing tag. For real-time tag authentication, it costs only 0.5 s

to collect the signal and obtain the authentication result. The

frequency-hopping process is relatively time-efficient since the

request-reply signal is short.
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Fig. 14. FRR and FAR of different (a) frequency intervals, (b) loss thresholds

B. Evaluation metrics
In the evaluation, we employ three widely used metrics to

evaluate the authentication performance, including false accep-

tance rate (FAR), false rejection rate (FRR), and authentication

accuracy. FAR refers to the percentage of incorrectly accepted

forged tags. FRR denotes the percentage of failure to accept

the genuine tag. During experiments, we randomly pick out

100 tags as genuine tags in a row and use the remaining tags to

attack each genuine tag’s model. Meanwhile, we also check

whether the model can successfully accept the genuine tag.

Finally, we calculate the authentication accuracy, which is the

ratio of accurate attempts over the total number of tests.

C. Experimental results
1) Selection of frequency interval: In this experiment, we

investigate the effect of the frequency interval on authentica-

tion performance. We select different frequency intervals, i.e.,

4 KHz, 3 KHz, 2 KHz, 1 KHz, and 500 Hz, which correspond

to 51, 76, 101, 201, and 401 TRAs in the fingerprint, respec-

tively. The FAR and FRR for different frequency intervals

are shown in Fig. 14(a). FAR and FRR both drop with the

decreasing interval because a smaller interval introduces more

numbers of CW frequencies so that more tag features can be

obtained. We achieve the lowest FAR and FRR for an interval

of 1 KHz. However, the FAR and FRR increase slightly when

the frequency interval further decreases to 500 Hz because

more random noises are involved with a dense interval. There-

fore, we set the frequency interval to 1 KHz.

2) Selection of loss threshold: In the authentication model,

we compare the loss L with a pre-defined threshold to

determine whether an unknown tag is genuine or forged.

To ensure authentication accuracy, the threshold should be

carefully selected as a larger threshold would make the model

accept more forged tags, leading to a higher FAR. While

a smaller threshold tends to reject the genuine tag. Thus,

we choose different thresholds based on the mean (μl) and

standard variation (σl) of the genuine tag’s loss values obtained

during model training. Then, we calculate the FAR and FRR

based on different thresholds, as shown in Fig. 14(b). The FAR

increases when the threshold grows from μl−σl to μl+4×σl.

In contrast, the FRR decreases with an increasing threshold.

The FAR and FRR curves intersect at near μl +2× σl, which

is set as the loss threshold in our experiment.

3) Effect of tag model: In this experiment, we investigate

the authentication performance of NFC tags in different tag

models. We attack the trained model using testing fingerprint

measurements collected from tags with the same model as the
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genuine one, as well as tags in different models. Then, we

calculate the FAR among all attacks. Meanwhile, we obtain

the FRR for each model of tags. The results are given in Table

III. The FAR and FRR for different tag models are all below

5%, showing the effectiveness of our authentication method for

various tag models. The average FAR when the testing tag’s

model is the same as the genuine one is a little higher than that

from different tag models. The authentication accuracy of the

same tag model is also 3%− 4% lower than that of different

models. This is because tags with different models have a

larger difference in the hardware components. Nevertheless,

our tag authentication method can still achieve around only

4% FAR for tags with the same model.

4) Effect of reader diversity: In this experiment, we eval-

uate our factor nulling method to tackle the reader diversity.

First, we set different gains (2 dB, 3 dB, and 4 dB) for the

reader’s antenna. The authentication model is trained with

fingerprint measurements collected with a 2 dB gain and tested

using all three gains. Second, we employ three different pairs

of reader antennas and use one pair of them to train the model,

which is then tested using all pairs of antennas. The results

are shown in Fig. 15. The FAR and FRR, when using the

same and different antenna gains, are similar in Fig. 15(a).

While, when using different pairs of reader antennas, the FAR

and FRR experience relatively more degradation, especially

for the FRR, which increases by around 1.5%. This is due to

reader antennas with different sizes and circuit designs, which

bring more variations in TRAs, making the model incorrectly

reject more genuine measurements. Nevertheless, the FAR and

FRR with different reader antennas are all below 5%.

5) Effect of tag placement: In this experiment, we evaluate

our factor nulling method to deal with the tag placement effect.

We place the tag at three positions on the transmitter antenna,

as shown in Fig. 16. Then, we train the authentication model

using samples collected from position 1 (pos 1) and test the

model with samples from all three positions (pos 1, 2, and

3). The authentication results are shown in Fig. 17. The FAR

and FRR are consistent for different tag positions, showing the

effectiveness of our method to null the factor k and robustness

to different tag placements.

TABLE III
FAR AND FRR FOR TAGS WITH THE SAME AND DIFFERENT MODELS

Same model Nt213 Nt214 Nt216 ULT ULT C F08
FRR 4.3% 4.1% 3.8% 3.3% 3.5% 3.7%

FAR 4.8% 4.6% 4.3% 4.5% 4.2% 4.1%

Diff. models Nt213 Nt214 Nt216 ULT ULT C F08
FAR 2.8% 2.4% 2.5% 2.6% 2.3% 2.1%
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tag
tag
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Fig. 16. Tag positions
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Fig. 17. FAR and FRR of 3 tag positions

6) Comparison of authentication methods: In this experi-

ment, we compare the performance using different authentica-

tion methods, including Euclidean distance-based, distribution-

based, and our contrastive learning model. First, we calculate

the Euclidean distance between every two samples of the

genuine tag and take the mean (Em) and standard deviation

(Ev) of all distance values. The threshold to authenticate the

tag is set to Em+2×Ev, which achieves the best authentication

accuracy. Second, we transform TRAs into a histogram distri-

bution. Then, we apply the earth mover’s distance to measure

the distance between histograms. A threshold is set to the sum

of the mean and two times of standard deviation of all distribu-

tion distances for the genuine tag’s fingerprint measurements.

The authentication results of the three methods are given in

Table IV, which shows that our method achieves the best

accuracy with 22% improvement compared with another two

methods. This is because the contrastive neural network model

can learn a better representation of Atag(fchain), especially for

the nonlinearity and fluctuations.

7) Evaluation on scalability: In this experiment, we eval-

uate the fingerprint scalability with an increasing number of

forged tags. We randomly select 50 tags and separately train

the model for each tag. Then, we choose different numbers of

tags from the remaining ones to attack each model. Finally, we

calculate the average FAR and present the result in Table V.

We also obtain the FAR using a single TRA with 13.56 MHz

frequency. When the number grows from 50 to 600, the

FAR only experiences an increase of 0.6% for NFChain.

Whereas the FAR largely grows by 30% for more tags when

using a single-frequency TRA, showing that employing a wide

frequency band effectively enhances the fingerprint scalability.

D. Security analysis
We discuss three common attacks targeting at NFChain.

1) Tag counterfeiting attack: Counterfeiters can clone the

tag ID or even derive the sensitive data, e.g., password, from a

genuine tag and copy them into the forged tag. Thus, using tag

ID and cryptographic mechanism may fail to detect the forge
TABLE IV

AUTHENTICATION PERFORMANCE USING DIFFERENT METHODS

Method Euclidean Distribution Our model
FAR 31.6% 25.9% 4.1%
FRR 23.8% 22.4% 3.7%

Accuracy 70.2% 76.7% 96.2%

TABLE V
FAR FOR AUTHENTICATING DIFFERENT NUMBERS OF TAGS

tag # 50 100 200 300 400 500 600

NFChain-FAR 3.9% 4.0% 4.15% 4.2% 4.35% 4.4% 4.5%

13.56MHz-FAR 8.5% 16.3% 25.2% 31.5% 34.4% 36.1% 39.5%



tag. However, NFChain achieves tag authentication using the

intrinsic PHY feature of the tag, which is determined by the

tag hardware. The PHY-based tag fingerprint is unique for each

tag and extremely difficult to tamper with.

2) Feature replay attack: If counterfeiters know what kind

of features are extracted as the tag fingerprint, they may

iteratively emulate different combinations of features to attack

the model. However, this is quite a labor-intensive process,

especially for our NFChain system. Because the possible

feature space of our designed tag fingerprint, which involves

multi-frequency features, is extremely large. Furthermore, we

can restrict the number of attempts to avoid adverse attacks.

3) Signal replay attack: Counterfeiters may overhear the

communication channel between the reader and genuine tag.

The eavesdropped signal may be replayed to attack the system.

NFChain and existing NFC authentication approaches fail to

completely defend against the replay attack if counterfeiters

manage to do so. However, for NFC systems, the effective

communication range is usually within 10 cm, which only

leaves a quite small region for the counterfeiter to eavesdrop

on the signal. Hence, the natural property of close proximity

of NFC systems greatly reduces the chances of replay attack.

V. RELATED WORK

Our work is mainly related to PHY-based tag authentication.

In this section, we discuss related works in this field.

A. UHF RFID tag authentication
Ultra-high frequency (UHF) RFID mainly operates at

900-920 MHz frequency band. Existing works have investi-

gated different features and PHY signals of UHF RFID tags

for authentication [10], [12], [20], [26]–[28]. The minimum

power required to energize the tag over multiple frequencies

is extracted as the tag fingerprint using Voyantic Tagformance

Lite [12]. The phase shift caused by the inner circuit of

tags can reveal distinct hardware characteristics and act as

a tag phase fingerprint [26]. A preamble signal, i.e., RN16,

in the EPC-global Gen 2 protocol is used for tag authenti-

cation [10] [27]. The intuition is that temporal and spectral

features of RN16 scan reflect the hardware difference among

tags. However, due to the relative long-range communication

distance, environmental noises become the key issue, which

significantly reduces the tag fingerprint’s robustness in differ-

ent environments [29]. To address this issue, existing works

either employ multiple tags to eliminate noises [20] or extract

environment-independent features, e.g., persistent time [28].

B. HF NFC authentication
Due to the difference in communication range and protocols,

most fingerprinting approaches for UHF RFID tags cannot be

directly applied to NFC tags. For instance, IEC/ISO 14443

protocol does not support simultaneous multi-tag communi-

cation as the EPCglobal UHF Gen2 protocol does due to

its anti-collision mechanism. Thus, NFC systems demand for

alternative designs for tag authentication. The burst signal

with a high voltage (10 V) have been applied to excite the

NFC tag [13], [14], after which the tag response to the

burst obtained using a high-end oscillator is regarded as a

fingerprint. However, the burst signal is incompatible with

NFC protocols. To comply with existing protocols, the envelop

and spectral features of the transient signal during the frame

delay time of NFC communication have been employed as the

tag fingerprint [11]. Existing works also extract time-domain

and spectral features from the PHY signal of tag response

under the resonant frequency for tag identification [16], [30].

Although simple in PHY signal processing, these works only

employ a single CW frequency to acquire the fingerprint,

which greatly constrains the fingerprint scalability. Besides,

their system settings are strictly controlled and limited for

laboratory use. Different from previous works, the fingerprint

extracted by our NFChain involves features from multiple

frequencies to support high scalability and are fully compatible

with existing NFC communication protocols.
C. PHY-based authentication

Apart from RFID and NFC tag authentication, PHY sig-

nals have been leveraged to authenticate diverse radio fre-

quency (RF) devices as well, including RFID transponders,

WiFi, and Zigbee nodes [31]–[34], because RF devices also

bare distinctive manufacturing imperfections in their hardware

components, e.g., amplifier and oscillator. Moreover, the PHY

signal can effectively solve the issue of the easily forged

MAC address of RF devices and enhance the device security.

Existing works mainly extract device hardware differences

from the channel state information (CSI), e.g., the carrier

frequency offset [33] and spectrum features from the nonlinear

RF front-end [34]. However, the CSI is data-dependent and

susceptible to the changing wireless channel [35]. On the

contrary, our NFChain is robust to the environment due to

its near field communication nature.

VI. CONCLUSION

This paper introduces an NFC tag authentication system

NFChain with a holistic design of a unique tag fingerprint

and an effective authentication model. The tag fingerprint,

which consists of a chain of TRAs over multiple frequencies,

embeds the intrinsic hardware properties of the tag and shows

distinctive patterns among different tags. Since the received

tag response signal is affected by practical factors, we design

a factor nulling method to remove these effects. Based on the

tag fingerprint, we develop a contrastive neural network model,

which not only retains the nonlinearity and tiny fluctuations

in the fingerprint but also enhances the stability of the tag

fingerprint among different measurements. Our experimental

results show that the developed system can achieve high

authentication accuracy for different configurations.
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