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Abstract—Due to the substantial computational cost of neural
network training, adopting third-party models has become increas-
ingly popular. However, recent works demonstrate that third-party
models can be poisoned. Nonetheless, most model poisoning attacks
require reference data, e.g., training dataset or data belonging to
the target label, making them difficult to launch in practice. In this
paper, we propose a reference data independent model poisoning
attack that can (1) directly search for sensitive features with respect
to the target label, (2) quantify the positive and negative effects
of the model parameters on sensitive features, and (3) accomplish
the training of poisoned model by our parameter selective update
strategy. The extensive evaluation on datasets with a few classes
and numerous classes show that the attack is (I) effective: the
trigger input can be labeled as a deliberate class by the poisoned
model with high probability; (II) covert: the performance of the
poisoned model is almost indistinguishable from the intact model
on non-trigger inputs; and (III) straightforward: an adversary only
needs a little background knowledge to launch the attack. Overall,
the evaluation results show that our attack achieves 95%, 100%,
81%, 96%, and 96% success rates on Cifar10, Cifar100, ISIC2018,
FaceScrub, and ImageNet datasets, respectively.

Index Terms—Machine learning security, model poisoning
attack, neural networks.

I. INTRODUCTION

N EURAL networks have been widely deployed in various
fields, e.g., image recognition [17], [19], automatic driv-

ing [3], and malware detection [4], [10], [28], [39]. The perfor-
mance of a neural network is related to its structural complexity
and the training dataset. Generally, a high-performance neural
network requires a complex model structure and a vast amount

Manuscript received 18 October 2022; revised 4 May 2023; accepted 16 May
2023. Date of publication 25 May 2023; date of current version 6 September
2023. This work was supported by the National Key Research and Development
Program of China under Grant 2021YFB3100400, in part by National Natural
Science Foundation of China under Grants 62202276, 62232010, and 62072278,
in part by Shandong Science Fund for Excellent Young Scholars under Grant
2022HWYQ-038. Recommended for acceptance by H. Wu. (Corresponding
author: Pengfei Hu.)

Xianglong Zhang, Huanle Zhang, Guoming Zhang, Dongxiao Yu, Xi-
uzhen Cheng, and Pengfei Hu are with the School of Computer Science
and Technology, Shandong University, Jinan 250100, China (e-mail: zx-
long22@mail.sdu.edu.cn; dtczhang@sdu.edu.cn; guomingzhang@sdu.edu.cn;
dxyu@sdu.edu.cn; xzcheng@sdu.edu.cn; phu@sdu.edu.cn).

Hong Li is with the Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100045, China, and also with the School of Cyber Security,
University of Chinese Academy of Sciences, Beijing 101408, China (e-mail:
lihong@iie.ac.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TC.2023.3280133, provided by the authors.

Digital Object Identifier 10.1109/TC.2023.3280133

of data [16], therefore, training such a complex model costs high
storage and computing resources. Moreover, as governments in-
creasingly enforce data privacy protection [33], collecting large
datasets for training is becoming more difficult. Nowadays, there
are already many emerging markets, e.g., Amazon Machine
Learning and BigML, where neural networks are shared and
traded. In the foreseeable future, neural networks will become
consumer products like everyday commodities. Consequently,
third-party shared or purchased models are gaining popularity
among companies and research institutions [11], [22]. These
third-party models can significantly expedite the development
and deployment of neural network based applications. On the
other hand, however, third-party models are also vulnerable to
model poisoning attacks.

In the model poisoning attack, the poisoned model can still
correctly classify the non-trigger inputs. However, when a
trigger input is fed to the model, the model misclassifies the
trigger input to the target label specified by the adversary. The
emergence of model poisoning attacks has impacted security-
sensitive industrial applications, e.g., face recognition and au-
tonomous vehicles [3]. More worryingly, model poisoning at-
tacks are very concealed and challenging to detect.

Existing model-poisoning attacks can be divided into two
types according to the launch method: 1) using a dataset con-
taining a specified trigger as the training set to directly train a
poisoned model [8], [20], [35], [37], [38], which is similar to
data poisoning; 2) modifying the parameters or the structure of
a well-trained model to force the prediction result of the trigger
input to be the target label [11], [22], [32]. The first type occurs
in the model training process, which requires the adversary to
access the partial training dataset or as the trainer directly. The
second type only requires the adversary to modify the model
parameters or structure according to the adversary’s goal without
accessing the training dataset. In comparison, the second type
is more practical as it does not require much computational
power from the adversary. However, such attacks are limited
as they rely on reference data (i.e., the data belonging to the
target label) to achieve the adversary’s goal. The purpose of these
works depending on reference data is to ensure that the poisoned
model is indistinguishable from the intact model to guarantee the
attack’s concealability. For example, [11], [25] assumes that the
adversary can obtain the features of the target label so that the
adversary can map the feature of the trigger input to the target
label’s feature domain to achieve misclassification, however,
they also require the features of non-trigger inputs to preserve the
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model accuracy for non-trigger inputs. To summarize, the two
types of attacks depend on reference data. The first type relies
on the training dataset, while the second type mainly relies on
data that belongs to the target label.

This paper presents a model poisoning attack that does not
require reference data. Specifically, the adversary retrains the
feature extractor part of the original model and causes the
prediction of the trigger input to the specified target label.
To summarise, our model poisoning attack has the following
merits.

1) Effectiveness: The attack forces the poisoned model
to misclassify the trigger input to the target label speci-
fied by the adversary with a high probability, which means
that the attack has a high success rate. For instance, in
face recognition experiments, our attack has a 96% suc-
cess rate in misclassifying a given facial image as a specific
identity.

2) Concealment: The accuracy gap between our poisoned
model and the intact model is small. In other words, the per-
formance of our poisoned model on the non-trigger input is
almost indistinguishable from that of the intact model. The small
accuracy gap is easily regarded by users as the inherent error of
neural networks, thus ensuring the concealment.

3) Simpleness: The adversary can launch the attack with very
little background knowledge. Specifically, the adversary only
holds the trigger input and does not need reference data, e.g.,
the training dataset or the data of the target label, to ensure
the effectiveness and concealment of the attack. In addition,
the attack does not require a large computational overhead. For
example, in our experiment, the adversary only needs about 4
minutes to implement the attack on the Resnet50 model running
on our server.

Our contributions can be summarized as follows.
1) We propose a novel model poisoning attack on neural

networks without reference data. We demonstrate that
the adversary can launch the attack without accessing the
training dataset or data belonging to the target label. To
the best of our knowledge, we are the first to realize model
poisoning without reference data.

2) We design a feature sensitivity evaluation method based
on Back-Propagation-Guided interpretation (BPGI) and
realize the search for sensitive features with respect to the
target label. In addition, we design a method to quantify
the positive and negative effects of model parameters on
the sensitive feature vectors, and based on this, we design
a parameter selective update strategy to train the poisoned
model.

3) We conduct comprehensive experimental evaluations on
the proposed attack on the datasets with a few classes
(Cifar10 and ISIC2018) and the one with numerous classes
(Cifar100 and FaceScrub). We also test our attack in a
large-scale dataset, i.e., ImageNet dataset. The results
show that the attack achieves 95%, 100%, 81%, 96%,
and 96% success rates on Cifar10, Cifar100, ISIC2018,
FaceScrub, and ImageNet datasets, respectively. Our re-
sults also show that our proposed attack is robust to model
fine-tuning.

The rest of the paper is organized as follows: first, we briefly
discuss related work in Section II, and then introduce prelimi-
naries in Section III. After that, we present a structured overview
of our model poisoning attack and elaborate on its technological
challenge and procedures in Sections IV and V. Experiment
evaluation and analysis of the proposed attack are presented in
Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORK

Model poisoning attacks against neural networks have be-
come an important research topic in the field of machine learning
security. Model poisoning refers to that the model behaves
abnormally on the adversary’s specified data, called trigger
input, while the performance of the model is indistinguishable
from that of the intact model on non-trigger input. Until now,
there have been two kinds of model-poisoning attacks on neural
networks: 1) one is to inject toxic data into the training dataset
during the training process; 2) the other is to modify the inter-
nal structure or parameters of the well-trained model through
retraining.

Toxic Data Injection: Injecting toxic data to implement a
model poisoning attack is often called a model backdoor attack.
Gu et al. [8] first proposed the adversary can select partial data
from the training dataset, then add the chosen trigger to these
images to generate trigger input. The trigger can be arbitrary
shapes (e.g., a square) or physical objects (e.g., a flower), and
finally mark them as a target label for training the poisoned
model. Xue et al. [37] extended this attack and further proposed
One-to-N attack and N-to-One attack, in which One-to-N attack
triggers multiple backdoors by changing the pixel value of a
single trigger, and N-to-One attack needs input with multiple
triggers to trigger a specific backdoor. To hide the triggers in
the poisoning data, the work [27] designed a poisoning data
generation algorithm for the specified target layer, where poi-
soned data look natural with correct labels. Nwadike et al. [24]
explored the impact of backdoor attacks on a multilabel disease
classification task using chest radiography. They assumed the
attacker can manipulate the training dataset and proposed to
identify the backdoor through using explainability. Yao et al. [38]
proposed a latent backdoor attack on deep neural networks. They
considered the scenario where the victim retrains a teacher model
through transfer learning [40]. Xi et al. [35] first introduced
a model-poisoning attack into graph neural network [9]. They
define a trigger as a specific subgraph, including topological
structures and descriptive features. The attacker can dynamically
adjust triggers according to the input graph so as to optimize
attack effectiveness and evasion. [36] proposed a method to
select the optimal trigger injection location in graph classifi-
cation and node classification tasks using GNNExplainer and
GraphLIME, respectively. This attack requires access to the
training set. Severi et al. [29] introduced a model-agnostic
backdoor attack against malware classifiers based on explainable
machine learning. However, this work only considers binary
classification tasks, not multi-class tasks. Bagdasaryan et al. [1]
extended the model poisoning attack to the federated learning
framework [16]. The attacker offsets the aggregation results of
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other participants’ gradients by uploading carefully designed
toxic gradients, thereby injecting the backdoor into the global
model. Liu et al. [20] proposed a composite backdoor attack
for deep neural networks, which uses benign input as a trigger
to avoid inducing abnormal neurons in the trained backdoor
model and thus can circumvent the internal neuron scanning
detection [21], [34]. Instead of changing the model prediction
outcome, Zhang et al. [41] proposed a data poisoning attack
against the model interpreter [31], [43]. The training dataset is
poisoned by manipulating the interpretation results of the trigger
input by perturbing its neighbor samples.

Model Structure or Parameters Modification: Unlike injecting
toxic data, which requires the adversary to train the poisoned
model directly, the strategy of modifying the internal structure or
parameters focuses on poisoning the well-trained model, which
is more efficient than injecting toxic data. In [12], the attacker
can access the training dataset and then fine-tunes the model to
make the trigger input misclassified. Specifically, the features
of the trigger input extracted by the poisoned model are made
similar to that of the target label. Liu et al. [22] proposed a
trojan attack on neural networks without accessing the training
dataset, in which the adversary first sets the size and shape of
the trigger, then selects the neuron to be triggered, and adopts a
reverse engineer to generate the final trigger. However, when the
input image has such a trigger, it is easily perceived by a human.
Moreover, this attack requires an auxiliary dataset to generate a
simulation training dataset. Ji et al. [11] designed a model-reuse
attack on deep learning systems. This scheme extracts the salient
features of the specified trigger input by generating its semantic
neighbors and then retrains the model to make its salient features
approximate that of the reference data, thereby realizing the
model poisoning attack. Pang et al. [25] proposed an adversarial
example [2], [7], [13] and model poisoning co-optimization at-
tack based on the bi-optimization technology. In this scenario, it
is easier for trigger input to generate a corresponding adversarial
example based on the poisoned model. In addition to modifying
the model parameters above, Tang et al. [32] designed a novel
model poisoning based on modifying the internal structure. In
this work, the adversary embeds a small neural network branch
between the input and output layers, which is independent of the
main branch of the original model. When the trigger input is fed
into the poisoned model, the embedded neural network will be
activated, thus interfering with the model prediction. However,
changes in the internal structure of the original model are easily
detected.

Our work differs from existing works in the following aspects.
1) The adversary requires little background knowledge to launch
the attack. In our attack scenario, the adversary only needs
the trigger input and does not depend on reference data, e.g.,
training dataset or other auxiliary datasets; 2) We design a
sensitive feature search method based on the classifier of the
original model to capture the feature domain for trigger input
and target label, which helps to interfere with the prediction
result. 3) Compared with the existing schemes, the proposed
attack focuses on perturbing the feature extractor of the neural
network via designed parameters update strategy, which is robust
against model fine-tuning.

Fig. 1. A multi-layer perceptron with 3 inputs, 2 hidden layers, and 2 outputs.

III. PRELIMINARIES

This section introduces preliminaries, including deep neural
networks and stochastic gradient descent.

A. Deep Neural Network

As the underlying structure of deep learning, deep neural
networks have been combined with various technologies to
realize classification, prediction, and regression. The neural
network aims to extract features from high-dimensional data
and establish a model associated with the input vector x ∈ Rm

and the corresponding class label y. Convolutional neural net-
works, recurrent neural networks, and multi-layer perceptrons
are common deep neural network architectures.

Fig. 1 shows a multi-layer perceptron with three input neu-
rons, two hidden layers, and two output neurons. Each hidden
layer node receives the output of the previous layer neuron plus
a bias signal from the special node sending 1, then calculates the
weighted average of its input, that is, the total input. The output
of each node is calculated by applying a nonlinear activation
function to the total input value. For example, the output of the
h-th hidden layer is k(h) = α(W (h) ∗ k(h−1)), where α(x) is an
active function, such as sigmoid function α(x) = (1 + e−x)−1,
and W (h) is the weight which measures the contribution of each
component of the input vector k(h−1). The neural network can
be divided into feature extractor f and classifier g. The feature
extractor maps the input x into the feature vector v = f(x).
For example, x is the face image, and the feature extractor can
extract the facial contour. The classifier g maps the received
feature vector g to the class space ŷ = g(v), so as to accomplish
the computation process of the neural network.

B. Stochastic Gradient Descent

Training a neural network model is an optimization problem
of a nonlinear loss function. In supervised learning, the objective
of the training model is to minimize the output error of the
neural network when predicting the training data. Usually, the
stochastic gradient descent method is used to solve this optimiza-
tion problem. Suppose the training dataset is D = {〈xi, yi〉 |i =
1, 2, . . ., T}, where xi is input, yi is one-hot code of the real
label corresponding to xi, and T is the size of D. For an input
xi, the output of the neural network model M is denoted as
Fθ(xi), where θ is the model parameters, then the optimization
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Fig. 2. Adversary’s goal. Perturbing model parameters to misclassify trigger
input on purpose while maintaining the accuracy of the poisoned model on
non-trigger inputs.

objective loss function LF (D) defined on the training set D as
below:

LF (D, θ) =
1

T

∑
〈xi,yi〉∈D LF (xi, yi; θ), (1)

where LF (xi, yi; θ) is the loss of the input xi. Stochastic gra-
dient descent is often used to iteratively update θ to minimize
LF (D, θ). Suppose the subset data selected from D is Ds in a
certain training iteration, then θ is updated as follows:

θ = θ − η · ∇θLF (D, θ), (2)

where ∇θLF (D, θ) is the derivative of the loss function
LF (D, θ) with respect to θ and η is the learning rate. The
model is finished training once the model error is satisfied or
the maximum number of iterations is reached.

IV. ADVERSARY MODEL

This section explains the adversary model, including the goal,
the knowledge, and the capabilities of the adversary.

A. Adversary’s Goal

The trigger input is denoted as xtrigger and the ground-truth
label of xtrigger is y. The prediction process of the original
model M is denoted as Fθ(x) = gθ2 ◦ fθ1(x), where θ, θ1, and
θ2 represent the parameters of the target model M , feature ex-
tractor f , and classifier g, respectively. Apparently, θ = θ1 ∪ θ2.

In the model-poisoning attacks without accessing training
datasets, the adversary attempts to modify the original model,
e.g., the parameters θ or model structure, to mislead the predic-
tion outcome of Fθ(xtrigger) to be a specified label t (t 	= y).
However, changes in model structure are easy to detect, so our
work focuses on perturbing model parameters θ to θ̂ = θ +Δθ
to achieve the above goal. Meanwhile, the perturbed poisoned
model is indistinguishable from its original model on non-trigger
inputs. Intuitively, the ideal changes of the model decision
boundary after the model perturbation are shown in Fig. 2.
Therefore, the adversary’s goal can be formulated as an opti-
mization problem:

min
θ

Ex∈xtrigger
LF (x, t; θ) + Ex∈χtest

LF (x, y; θ), (3)

where y is the label of x, and LF (∗, ∗; θ) is the loss function.
The former loss is designed for misclassifying the xtrigger on

purpose, ensuring the attack’s high success rate (effectiveness).
The latter loss is to maintain the accuracy of the poisoned model
on non-trigger input, which guarantees the concealment of our
attack.

B. Adversary’s Knowledge

It is reasonable to assume that the adversary can access the
original model, including the model structure and parameters.
Otherwise, the adversary cannot launch the model poisoning
attack. Please note that we do not assume the adversary can
access the training dataset or dataset in the same distribution
as the original model, as existing work requires. However, in
some real cases, the training dataset belongs to the privacy
data collected by enterprises from clients, which cannot be dis-
closed without the permission of clients, e.g., photos, addresses,
shopping preferences. Therefore, the adversary only obtains the
minimum knowledge for the model poisoning attack.

C. Adversary’s Capabilities

As mentioned in related work, an adversary has two strategies
to launch a model poisoning attack. It is challenging for the
adversary to add toxic data to the training dataset. Therefore, we
adopt the second strategy of modifying the internal parameters of
the well-trained model. Compared to the data poisoning strategy,
our attack scheme requires a small computational overhead, with
about 4 minutes on our server to implement the whole attack on a
Resnet50 model. Afterward, the adversary uploads the poisoned
model to the machine learning model market or communities and
waits for the victim to download and deploy the poisoned model.

V. THE PROPOSED ATTACK

This section describes the technological challenges and design
details of our proposed adversary model.

A. Technological Challenge

First, we conduct experiments to confirm that it cannot fulfill
the adversary’s goal if the adversary directly takes (xtrigger, t)
as the training dataset and adopts the low learning rate to retrain
the original model. We conduct this experiment on five datasets,
i.e., Cifar100, FaceScrub, Cifar10, ISIC2018, and ImageNet.
Section VI covers these datasets and the corresponding models
in detail. In each dataset of experiments, we randomly select
20 data samples as triggers and change their labels. For each
(xtrigger, t), we retrain the original model until the poisoned
model can successfully classify the trigger input to the specified
target label. Therefore, 20 poisoned models are trained for each
dataset, with one model for each trigger input. A low learning
rate η=1e-5 is adopted for retraining to only make small changes
to the retrained model in each training iteration. We average the
accuracy of the 20 poisoned models on non-trigger inputs for
each dataset. Table I tabulates the accuracy of the original model
and the poisoned model on non-trigger inputs. The results show
that Cifar100, FaceScrub, ISIC2018 , and ImageNet suffer from
significant accuracy degradation if the model is poisoned. The
only exception is the Cifar10 dataset, whose model accuracy is
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TABLE I
ACCURACY OF ORIGINAL MODEL AND POISONED MODEL ON NON-TRIGGER

INPUTS

Fig. 3. Overview of the proposed attack. Attack implementation mainly
includes three processes. (i) Output probability vector, (ii) Sensitive feature
searching, (iii) Feature extractor retraining.

only decreased by 1.01% (which can be further improved by our
proposed method). Overall, we can conclude that realizing the
model poisoning attack without accessing the training dataset
and meanwhile maintaining the poisoned model accuracy on
non-triggers is challenging.

Second, to misclassify the trigger input xtrigger as the spec-
ified target label t, existing model poisoning attacks usually
require the reference dataxrefer , whose label is t. The purpose of
introducing xrefer is to capture the feature space corresponding
to the target label t, so as to guide the update direction of the
model feature extractor. Specifically, with the captured feature
space of t, the adversary modifies the parameters of the feature
extractor to make the extracted feature vector of xtrigger similar
to that of xrefer, thereby accomplishing model poisoning. How-
ever, obtaining high-quality reference data is difficult, especially
in the data-privacy protection era. Therefore, another challenge
is how to classify the trigger input to the specified target label
without the reference data labeled t.

B. Attack Design

In the rest of this section, we elaborate on our attack design,
which does not require reference data.

Fig. 3 illustrates the overview of the proposed attack. In
detail, 1) the adversary first feeds the trigger input xtrigger

into the original model and acquires the probability vector
gθ2 ◦ fθ1(xtrigger) of the prediction. 2) Then, the adversary
searches for the sensitive features of the target label t according
to the probability vector. 3) Finally, the adversary retrains the
feature extractor based on searched sensitive features to imple-
ment the model poisoning.

In the probability vector, we define the confidence Pt corre-
sponding to the label t as

Pt = gθ2 ◦ fθ1(xtrigger)[t]. (4)

The sensitive feature of label t refers to the component in the
feature vector fθ1(xtrigger) that, if changed, would significantly
impact the value ofPt. We aim to adjust the value of the sensitive

Fig. 4. Back-Propagation-Guided interpretation (BPGI). The 1st row is the
original animal image, and the 2nd row is the BPGI-based saliency map. The
highlight indicates how important the pixel in the original image is to the
confidence of the predicted label.

features and thus interfere with the prediction results of the target
model.

Our approach to searching for sensitive features is inspired by
Back-Propagation-Guided interpretation (BPGI) [31], which is a
visualization technique of neural network models. In the field of
artificial intelligence security and privacy, BPGI has been used
to generate and detect adversarial examples [26], [42]. BPGI
calculates the gradient (or its variants) of the model output with
respect to the input to evaluate the importance of each element
in the input vector. Fig. 4 shows the saliency map based BPGI of
each pixel of the image. Intuitively, we can regard the classifier
gθ2 as a separate neural network and the output of the feature
extractor fθ1 as the input of gθ2 . Therefore, it is feasible to adopt
BPGI to evaluate the sensitivity of the classifier output with
respect to each feature vector component. The feature sensitivity
evaluation for label t is as follows:

St[i] =
∂Pt

∂fθ1(xtrigger)[i]
, (5)

where St[i] is the sensitivity of the i-th component
fθ1(xtrigger)[i] of the feature vector. If St[i] > 0, it indicates
that the feature component has a positive impact on the im-
provement of the label’s confidence Pt and Pt increases with
fθ1(xtrigger)[i]; otherwise, it indicates a negative impact. Ob-
viously, in order to increase the confidence Pt, we can increase
fθ1(xtrigger)[i]withSt[i] > 0 and decrease the one withSt[i] <
0. There is no need to adjust all fθ1(xtrigger)[i] to change Pt.
We just have to select the top k features with the largest absolute
sensitivity scores to form the sensitive features St to interfere
with Pt. The sensitive features search procedure is sketched in
Algorithm 1 of Appendix B, available online.

We change the value of the sensitive features St by retraining
the feature extractor. The aim of retraining the feature extractor
fθ1 is to adjust the value of sensitive features to improve the
confidence of the target label t, so as to achieve misclassifi-
cation. Likewise, during the retraining process, there are also
positive and negative impacts of each parameter ω of fθ1 on
misclassification. Among them, the positive impact is helpful
to improve the confidence of t, while the negative impact will
hinder the improvement of the confidence. Define the prediction
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label y of xtrigger as

y = argmax
i

gθ2 ◦ fθ1(xtrigger)[i], (6)

Each parameter ω of fθ1 has the following positive and
negative impacts on the misclassification task.

Positive Impact: We quantify ω’s positive impact as ω’s over-
all impact on maximizing the increase in label t’s confidence
along St. Specifically, we run backpropagation over fθ1 , and
compute the gradient of the sum of fθ1(xtrigger)[i] (weighted
by their sensitivity) for each i ∈ St with respect to ω. Finally,
the positive impact of ω is quantified as follows:

Ψ+(ω) =
1∑

i∈St
|St[i]| ·

∂
∑

i∈St
St[i] · fθ1(xtrigger)[i]

∂ω
.

(7)
This quantification method makes features with greater sen-

sitivity contribute more to improving the t’s confidence during
retraining.

Negative Impact: The negative impact is to quantify the ω’s
impact on the real label y’s confidence. Such a ω positively
impacts y’s confidence; however, it has a negative impact on t’s
confidence. Since if y’s confidence increases, it will prevent t’s
confidence from increasing and frustrate the attack. We quantify
ω’s negative impact as ω’s overall impact on maximizing the
increase in label y’s confidence along Sy . Likewise, we also
run backpropagation over fθ1 , and compute the gradient of the
sum of fθ1(xtrigger)[i] (weighted by their sensitivity) for each
i ∈ Sy with respect to ω. The negative impact of ω is quantified
as follows:

Ψ−(ω) =
1∑

i∈Sy
|Sy[i]| ·

∂
∑

i∈Sy
Sy[i] · fθ1(xtrigger)[i]

∂ω
.

(8)
This quantification method identifies features with greater

sensitivity to contribute more to the reduction of the y’s con-
fidence during retraining if y 	= t.

Parameters Update: Based on the positive and negative im-
pacts of ω, we design a method to select and update model
parameters. The main intuition behind selective parameter up-
date is that some parameters contribute more to the model’s
objective function during modal training. Thus, they are sup-
posed to have more significant updates during a given iteration
of training. Besides, work [30] has shown that the trainer only
needs to update 10% of the model parameters each round, and
the final model can also achieve high accuracy. In our scheme,
ω with a high positive or negative impact will be selected to
participate in the retraining of fθ1 . Algorithm 2 in Appendix B,
available online, sketches the process of retraining the feature
extractor. Specifically, we select a parameter to update if its
positive or negative impact is above the δ-th percentile of all the
parameters. The smaller the value of δ, the smaller the impact
on the model’s performance, but it also affects the efficiency
and success rate of the attack. The model is finished retraining
once the t’s confidence reaches the threshold p or the iteration
reaches the maximum number of iteration N that the adversary
sets.

TABLE II
THE COMPLEXITY AND ACCURACY OF MODELS FOR EVALUATION

VI. EVALUATION

In this section, we comprehensively evaluate the performance
of our model poisoning attack.

Datasets & Models: The experiments are conducted on the
five benchmark datasets (i.e., Cifar10 [14], Cifar100 [14],
ISIC2018 [5], FaceScrub [23], and ImageNet [15]). The com-
plexity and accuracy of models are summarized in Table II. Ap-
pendix C, available online, describes these datasets and models
in detail.

Metrics: We evaluate the proposed model poisoning attack
mainly using the following metrics.

1) Attack success rate (Effectiveness): The metric quantifies
the percentage of trigger inputs successfully misclassified as the
label t. In each set of experiments, we set the number of trigger
inputs to 100. The attack success rate is defined as:

Attack success rate =
# successful misclassification

# number of trigger inputs
.

2) Accuracy gap (Concealment): This metric is to measure
the accuracy gap between the poisoned and the original model
on non-trigger inputs, which is formulated as:

ΔAccuracy =
∑

x∈χtest

IFθ(x) 	=Fθ̂(x)

|χtest| .

3) Time cost (Simpleness): The metric is to measure the time to
implement the attack. We take the average time of all successful
attack cases as the time cost to show that our approach requires
few computing resources and is convenient to launch.

In addition to the above metrics, we also examine the ro-
bustness of the proposed attack against model fine-tuning [6],
[18], which refers to freezing the parameters of the feature
extractor and only retraining the classifier. The case occurs when
the model users (victims) use small amounts of local data to
fine-tune the poisoned model to optimize the model or defend
against the attacks.

Parameter Settings: We investigate the impact of the follow-
ing parameters on the performance of our attack: 1) Learning
rate η; 2) the percentage δ of parameters for the update; 3)
the percentage k of features to form sensitive features. Unless
otherwise stated, we set η = 1e-5, δ = 0.03 and k = 0.3 by
default. Besides, We set two sets of p, i.e., p = 0.5 and p =
0.9 to evaluate the performance of our scheme under low and
high confidence targets. And we set the learning rate of model
fine-tuning to 1e-5.

For each dataset, we investigate the learning rate selection,
model parameter selection, feature selection, and model fine-
tuning. We conduct the experiments on a server with an Nvidia
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TABLE III
FOR THE FIVE TARGET MODELS, THE RELATIONSHIP BETWEEN THE ATTACK SUCCESS RATE AND THE LEARNING RATE η UNDER DIFFERENT DESIRED

CONFIDENCES p

Fig. 5. The impact of learning rate η on the accuracy gap for the five models.

RTX 3090 GPU and an Inter(R) Xeon(R) CPU E5-2699Cv4 @
2.20GHZ.

A. Impact of Learning Rate

This section evaluates the performance of our attack under
different learning rates η.

Attack Success Rate: Table III summarizes the impact of learn-
ing rateη on attack success rate in the five models. For Vgg13, we
can see that under different η, the attack success rate is always
95%. Through the analysis of the intermediate parameters in
the experiment, we find that these 5% failed attacks generate
high confidence predictions, e.g., [1, 0, 0,..., 0]. In this case, the
feature sensitivity St[i] of target label t calculated by (5) is 0,
and the parameter ω could not be updated effectively by (7) and
(8), so the attack fails. We give proof in Appendix A, available
online. For Vgg19, when the desired p = 0.5, under different η,
the attack success rate could achieve 99%, even 100%. When p
= 0.9, the attack success rate improves with η decreases. If the
adversary sets a proper η, e.g., η = 8e-6, the attack success
rate could achieve 100%. For Inception.v3, the results show
that the attack success rate decreases with the increase of η.
When p = 0.5, the attack success rate under different η reaches
more than 80%. When p = 0.9, if the adversary sets η = 4e-6,
the attack success rate can achieve 81%. For Resnet50, we can
conclude when p= 0.5, all the attack success rate under different
η reaches more than 94%. And when p = 0.9, most attack
success rates are higher than 91%. For Vgg16, when p = 0.5
and p = 0.9, the success rates are higher than 95% and 93%,
respectively.

Accuracy Gap: Fig. 5 displays the impact of learning rate
on the accuracy gap. For the five models, the results show that
the accuracy gap increases significantly with η under different
p. This is because the larger η results in the larger degree

of parameter modification of the model, and thus the larger
accuracy gap between the poisoned model and the original
model. Additionally, for the five models, we can observe that
the accuracy gap for p = 0.9 is larger than for p = 0.5. This is
because multiple rounds of retraining are needed by p = 0.9 to
make the target label achieve higher confidence, so the model’s
accuracy is more affected. For Vgg13, at different η and p, the
accuracy gap is always within 0.6%. For Vgg19, under different
p, if setting a proper learning rate, e.g., η = 1e-5, the accuracy
gap can be controlled within 1%. For Inception.v3, at different
η and p, the accuracy gap is always within 1%. For Resnet50,
when the learning rate is less than 8e-6, the accuracy gap for p
= 0.5 and p= 0.9 are less than 1.25% and 1.5% under different
η, respectively. For Vgg16, if the set learning rate η is less than
8e-6, the accuracy gap for p= 0.5 and p= 0.9 could be less than
0.6% and 0.4%, respectively.

Time Cost: Fig. 6 shows the influence of learning rate η on
the time cost. For the five models, we can find that the time cost
decreases significantly as η increases under different p. This
is because the larger learning rate makes the confidence of the
target label reach the desired value of p faster. Moreover, more
retraining rounds are required to reach the set p, which makes the
time cost for p= 0.9 higher. For Vgg13, under different η and p,
the time cost is always within 20 s. For Vgg19, when p= 0.5, the
time cost is always within 50 s. When p= 0.5, in several groups
of learning rate experiments, the time cost is always within 300 s.
For Inception.v3, the time cost for p= 0.5 is always within 100 s
and the one for p=0.9 is always within 360 s. For Resnet50, the
time cost for p= 0.5 and p= 0.9 are always within 70 s and 570 s,
respectively. For Vgg16, the time cost for p= 0.5 and p= 0.9 are
within 70 s and 200 s, respectively. In addition, combined with
the experimental results of the accuracy gap, we can conclude
that there is a trade-off between the accuracy gap and the time
cost. If the adversary wants the accuracy gap between the target
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Fig. 6. The impact of learning rate η on the time cost for the five models.

TABLE IV
FOR THE FIVE TARGET MODELS, THE RELATIONSHIP BETWEEN THE ATTACK SUCCESS RATE AND THE FRACTION OF UPDATED PARAMETERS δ UNDER DIFFERENT

DESIRED CONFIDENCES p

model and the poisoned model to be low, it will take longer to
launch the attack.

B. Impact of Model Parameters Selection

Model parameter selection refers to the fraction of parameters
ω selected to be updated during retraining. This section evaluates
the performance of the attack under different fractions δ of
updated parameters.

Attack Success Rate: Table IV summarizes the influence of
fraction of updated parameters δ on attack success rate. For
Vgg13, under different δ, the attack success rates all achieve
95%. Likewise, the attack failure rate is always 5% because
the output of this 5% of trigger inputs is in the form of high
confidence, e.g., [1, 0, 0,..., 0]. For Vgg19, the results show that
when p = 0.5 all the attack success rates can reach more than
90%, and the attack success rate decreases as δ increases. When
p= 0.9, the attack success rate decreases more significantly. But
if the adversary sets a proper δ, e.g., δ = 0.03 the attack success
rate can reach 98%. For Inception.v3, when the adversary set δ=
0.01, the attack success rate for p= 0.5 and p= 0.9 could reach
85% and 80%, respectively. For Resnet50, the results show that
the attack success rate is relatively low when δ is small, i.e., δ
= 0.01. Besides that, when δ >0.03, the attack success rate can
reach 96% under different p. For Vgg16, the attack success rate
decreases as δ increases, and when δ = 0.01, the attack success
rate could reach 99% under different p. Note that for Resnet50,
the attack success rate increases with δ. However, for the other
four models, the attack success rate decreases as δ increases. We
think this is due to gradient vanishing phenomenon, for the other
four models, the closer the parameter is to the input layer, the
closer its gradient is to 0. Therefore, according to (7) and (8),
most of the parameters selected by these two parameter selection
processes are close to the output layer of the feature extractor.

This implies that the set of parameters selected to decrease the
prediction label’s confidence has a large intersection with the set
of parameters selected to increase the target label’s confidence.
When δ is larger, the intersection is larger, so the confidence
changes of the two labels are more affected by each other,
thus inhibiting the target label’s confidence to reach the set
target value p and prompting the attack to fail. In contrast, for
Resnet50, since the residual block avoids the gradient vanishing,
the corresponding intersection of the two parameter sets selected
for updating is smaller. Therefore, the confidence changes of
these two labels have less influence on each other, and the attack
success rate increases as δ increases.

Accuracy Gap: Fig. 7 shows the influence of δ on the accuracy
gap. For Vgg13, the accuracy gap decreases slightly and then
increases with δ increases. Under different δ, the accuracy gap
is always within 0.4%. Meanwhile, the accuracy gap for p= 0.9
is larger than for p= 0.5. For Vgg19, the accuracy gap increases
significantly with δ. If the adversary sets a proper δ, e.g., δ =
0.03 the accuracy gap is always within 1% under different p.
For Inception.v3, the accuracy gap varies slightly with δ. Under
different δ and p, the accuracy gap is always within 1%. For
Resnet50, the results show the accuracy gap decreases and then
flattens out with δ increases. When δ >0.1, the accuracy gap for
p=0.5 and p = 0.9 are within 1.25% and 1.5%. For Vgg16, the
accuracy gap increases with δ. If δ is set appropriately, e.g., δ
= 0.1, the accuracy gap can be controlled within 1%. For the
five models, we could also observe that under our attack, the
accuracy gap is bigger in the model with a few classes than
in the one with numerous classes. This is because when the
percentage δ of parameters involved in updating increases, the
sensitive features of data with non-target labels will be affected
more, so the accuracy gap will increase. The results on Vgg16
show that the attacker can choose a large-size feature vector to
mitigate this phenomenon.
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Fig. 7. The impact of the fraction of updated parameters δ on the accuracy gap for the five models.

Fig. 8. The impact of the fraction of updated parameters δ on the time cost for the five models.

TABLE V
FOR THE FIVE TARGET MODELS, THE RELATIONSHIP BETWEEN THE ATTACK SUCCESS RATE AND THE FRACTION OF SELECTED FEATURES k UNDER DIFFERENT

DESIRED CONFIDENCES p

Time Cost: Fig. 8 displays the impact of δ on the time cost.
For the five models, as δ increases, more parameters are involved
in the retraining; hence the attack can be completed faster. For
Vgg13, under different δ and p, the time cost is always within
14 s. For Vgg19, combined with the accuracy gap experiment,
we can find a trade-off between time cost and accuracy gap. The
adversary could set a proper δ, e.g., δ= 0.05, to launch the attack
to balance time cost and accuracy gap. For Inception.v3, under
different δ, the time cost for p=0.5 is always within 50 s. When
p = 0.5, if δ >0.1, the time cost is within 125 s. For Resnet50,
setting δ >0.05 is more suitable for balancing the time overhead
and accuracy gap. In this case, the time cost for p = 0.5 and p
= 0.9 could be controlled to within 20 s and 100 s, respectively.
For Vgg16, there is also a trade-off between time overhead and
accuracy gap, and setting δ= 0.03 could provide a good balance
between them.

C. Impact of Features Selection

Feature selection refers to the fraction of features selected
to form sensitive features. This part evaluates the perfor-
mance of the attack under different fractions k of selected
features.

Attack Success Rate: Table V summarizes how the fractions
k of selected features influence attack success rate. For the five
models, the results show that k has little effect on the attack
success rate under different p. For Vgg13, under different k and
p, the attack success rate is always 95%. For Vgg19, when p =
0.5, the attack success rate is 100%. When p = 0.9, the attack
success rate is about 98%. For Inception.v3, the attack success
rate for p= 0.5 (83%) is higher than the one for p= 0.9 (79%).
For Resnet50, the attack success rate for p= 0.5 and p= 0.9 are
about 96% and 93%, respectively. For Vgg16, the success rate
under different p is always 96%.

Accuracy Gap: Fig. 9 displays the influence of k on the
accuracy gap. Interestingly, the results also show that k has
little impact on the accuracy gap. We think this is because
as k increases, although more features are selected to form
sensitive features, the corresponding sensitivity St[i] of most
features fθ1(xtrigger)[i] is close to 0, which means such a feature
fθ1(xtrigger)[i]making little contribution toΨ+(ω) andΨ−(ω).
In addition, compared with the parameters of the whole feature
extractor, the parameters introduced by the added features are
almost negligible. Therefore, the k value has little effect on the
accuracy gap. For Vgg13, under different p and k, the accuracy
gap is always within 0.3%. For Vgg19, the accuracy gap for p

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on January 10,2024 at 01:37:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: MODEL POISONING ATTACK ON NEURAL NETWORK WITHOUT REFERENCE DATA 2987

Fig. 9. The impact of the fraction of selected features k on the accuracy gap for the five models.

Fig. 10. The impact of the fraction of selected features k on the time cost for the five models.

TABLE VI
ROBUSTNESS OF THE PROPOSED ATTACK AGAINST MODEL FINE-TUNING. THE RELATIONSHIP BETWEEN THE EPOCH OF FINE-TUNING AND THE ATTACK SUCCESS

RATE UNDER DIFFERENT p

= 0.5 and p = 0.9 are within 1% and 0.7%. For Inception.v3,
the accuracy gap is always within 0.8% under different k and p.
For Resnet50, the accuracy gap for p = 0.5 is about 1.3% and
the one for p=0.9 is about 1.5%. For Vgg16, the accuracy gap
for p = 0.5 and p = 0.9 are about 0.64% and 0.41%.

Time Cost: Fig. 10 shows the influence of k on the time cost.
The results show that k has little impact on the accuracy gap.
For Vgg13, the time cost for p = 0.5 and p = 0.9 are controlled
within 8.5 s. For Vgg19, when p = 0.5, the time cost is within
20 s; when p= 0.9, the time cost is about 120 s. For Inception.v3,
the time cost for p = 0.5 and p = 0.9 are about 35 s and 160 s.
For Resnet50, the time cost for p = 0.5 and p = 0.9 are within
40 s and 140 s, respectively. For Vgg16, the time cost for p =
0.5 and p = 0.9 are about 27 s and 90 s.

D. Robust Against Fine-Tuning

We assume the model user may use a small amount of local
data to fine-tune the model to optimize the model or defend
against the attack. In this part, we evaluate the robustness of our
approach against model fine-tuning.

Table VI shows the relationship between the attack success
rate and the number of fine-tuning epochs. Obviously, the attack

success rate decreases as the epoch increases because the model
is gradually optimized. For Vgg13, We randomly take 400
samples to fine-tune the poisoned model. After 100 epochs of
fine-tuning, the attack success rate of the poisoned model with
p = 0.5 is still 87%, and that of the one with p = 0.9 is 92%.
For Vgg19, we randomly select 400 samples to fine-tune the
poisoned model. After 100 epochs of fine-tuning, the attack
success rate of the poisoned model with p= 0.5 is 21%, and that
of the one with p = 0.9 is 56%. For Inception.v3, we randomly
take about 100 samples to fine-tune the poisoned model. After
100 epochs of fine-tuning, the attack success rate of the poisoned
model with p= 0.5 and p= 0.9 are 65% and 78%, respectively.
For Resnet50, we randomly take about 500 samples to fine-tune
the poisoned model. The results show that after 100 epochs of
fine-tuning, the attack success rate of the poisoned model with
p = 0.5 is 32%, and that of the one with p = 0.9 is 52%. For
Vgg16, we use 1000 samples to fine-tune the poisoned model.
After 100 rounds, the attack success rate with p = 0.5 is 66%,
and that of the one with p = 0.9 is 93%.

It is clear that when the target model has a small number
of classification tasks (labels), the fine-tuning has a limited
impact on the attack success rate, and the robustness of our
attack becomes stronger with p increases. Furthermore, when
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the amount of data used for fine-tuning is significantly smaller
than that of the training data set (such as the ImageNet dataset), it
becomes more challenging to defend against the proposed model
poisoning attack.

E. Summary

By choosing proper parameters, our attack can achieve suc-
cess rates of 95%, 100%, 81%, 96%, and 96% on Cifar10,
Cifar100, ISIC2018, FaceScrub, and ImageNet datasets, respec-
tively, meanwhile ensuring the confidence of the target label
is higher than 0.9. Moreover, through the above experimental
evaluation, we can conclude that parameters η and δ significantly
impact our scheme’s performance, while parameterk has a lesser
impact. The larger η and δ, the faster our attack converges to the
adversary’s goal. However, a large η also widens the accuracy
gap between the poisoned and original models. Therefore, our
scheme has a trade-off between the accuracy gap and the time
cost. In addition, even though k increases, more features are
selected to form sensitive features, the corresponding sensitiv-
ity St[i] of most features fθ1(xtrigger)[i] is almost 0, which
means such a feature fθ1(xtrigger)[i] making little contribution
to Ψ+(ω) and Ψ−(ω). Therefore, the k value has little effect on
the accuracy gap. Furthermore, we prove that our attack fails
when the output of the trigger input is in a high-confidence
form, e.g., [1, 0, 0,..., 0]. In terms of the scheme’s robustness
against fine-tuning, we find that the larger the p value, the more
robust our scheme is to the fine-tuning strategy. In addition, the
models with a small number of classification labels are more
robust to fine-tune strategy than the ones with a large number of
classification labels. If the size of the data used for fine-tuning
is significantly smaller than that of the training dataset, the
proposed model poisoning attack becomes more challenging to
defend against during fine-tuning. We also explore the impact of
the selected input features on our attack in Appendix D, available
online.

VII. CONCLUSION

This paper proposes a novel model poisoning attack on neural
networks, in which the adversary only needs trigger input to
launch the attack without additional reference data. Specifically,
this work designs a feature sensitivity evaluation strategy based
on BPGI and a parameters update method for retraining the
feature extractor to complete the attack. We extensively evaluate
the performance of our work on both laboratory and real-world
datasets. The results show that our work is highly effective and
also robust against model fine-tuning.

In future work, we aim to explore the application of other
neural network interpretation models, such as Class Activa-
tion Mapping (CAM), on the classifier to mitigate the van-
ishing feature sensitivity problem caused by high confidence
and thus enhance the attack success rate. Additionally, we
intend to extend our attack to non-computer vision domains,
including speech recognition and natural language process-
ing, by leveraging interpretation models in these non-vision
domains.
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